

Improving LPWAN Performance using Directional Antennas

Brandon Joel Gonzalez, Zhuo Cheng Department of Electrical and Computer Engineering

Background and Goals

- Low-Power Wide-Area Networks (LPWANs), such as LoRaWAN, are a popular form of wireless networks for IoT
 - Provides large areas of coverage, long battery life, low cost
 - O However, poor network capacity and high interference between clients are significant problems
- Directional antennas are a potential solution
 - Utilizing nulling to focus a node's radiation pattern in specific directions (i.e. toward a gateway)
 - Hoping for improvements in coverage and interference via beam steering for nodes (compared to omnidirectional patterns)

LoRaWAN network architecture.
Interferers are not necessarily malicious, but still affect a LoRa node's connection with gateways.

Through nulling, interference between nodes in the network can be improved.

Implementation

- Starter firmware, server code, and hardware design provided by Dr. Artur Balanuta of the WiSE Lab from his NulLoRa paper
 - C++ code running on Heltic CubeCell MCU
 - Server written in Python, hosted using OpenChirp (via ChirpStack)
 - Four LoRaWAN gateways available on-campus for access
- A node cycles through its nulling patterns, tracking which gives best signal
- Upon cycling through patterns, node chooses the best nulling pattern available (or just one of two omnidirectional patterns)
- Server can notify node if signal falls below threshold, then chooses new pattern

Results

- Able to choose between nulling and antenna diversity (i.e. using one of the two omnidirectional patterns)
 - Chooses antenna diversity when interference with other nodes is not a significant factor in performance
 - Chooses nulling if more precise beam steering is needed
 - Cycling methodology works to select the best nulling pattern given interference in current environment
- As more nodes are added to the network, nulling becomes a better choice to avoid interference

LoRaWAN gateways located around CMU's campus.

The NulLoRa test node, alongside other 915 MHz devices used as interferers for testing.

Lessons Learned

- Working with real hardware can be very challenging
 - Waiting for PCBs and parts to arrive
 - Assembling SMD components by hand
 - Hardware defects and malfunctions impeded more thorough testing
- More specific nulling patterns would be ideal for best coverage and interference
 - Tradeoff with hardware complexity and cost per device
- Devices usually wait long times before retransmitting data, so channel conditions may change substantially (requiring recycling)
- Best approach would also utilize network load feedback to select nulling patterns
 - Would need hundreds/thousands of clients to test in the field, so unfortunately unfeasible for this project's scope