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• “Follow Me”: When users moves from area to area, 

backend cloudlet service would follow.

• “Don’t Forget”: User-associated application state would 

continue working on the new cloudlet.

• Problem: For wearable cognitive assistance apps, 

different users are at different assembly steps.

• Goal: To provide a seamless, non-application-specific, 

user state migration prototype.

Background & Project Goal System Design

Future Improvement

• Streaming state migration: To handle how to migrate the 

varying state of application.

• Multi-user scenario: Only migrate user associated states 

while keeping others as is.

• Migration Detection: Integrate with a real orchestrator to 

decide when to migrate the service.

• Trim a minimum set of exposed APIs.

• Design a workable communication pipeline between module, 

application and client.

• Adapt client app to maintain user session transfer.

• Add light & heavy state to the App

Challenge

Fig. 1: Sandwich Case Study

Solution:

• A state migration module MigrateEngine [Github] [Docker].

• Expose minimal APIs to application to participate in state 

transfer (e.g. set which state to be extract / how to merge).

• Able to migrate both light state (user progress) & heavy 

state (video frames).

• Automatically re-connect user session to new cloudlets.

Case Study: Gabriel-Sandwich

“Kids building Sandwich toy in a moving car”

Project Overview

Conclusion

• User states can be migrated “back and forth” in different 

servers whenever the orchestrator instructs.

• Only expose Extract, Merge APIs and related signal 

protocol to the App.

• No performance overhead to original App.

• Can apply the module to other Gabriel Apps.
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State Type Example Migration Method

Light State User Progress ProtoBuf / Pickle

File State Recording Frames 

file

Rsync or Websocket

Session Client Side Reconnect

User Progress State on Cloudlet:

https://github.com/Blickwinkel1107/gabriel-sandwich
https://hub.docker.com/repository/docker/blickwinkel1107/gabriel-sandwich-os

