
Follow Me and Don’t Forget!
Xiang Yue

Mentor: Jim Blakley

• “Follow Me”: When users moves from area to area, 

backend cloudlet service would follow.

• “Don’t Forget”: User-associated application state would 

continue working on the new cloudlet.

• Problem: For wearable cognitive assistance apps, 

different users are at different assembly steps.

• Goal: To provide a seamless, non-application-specific, 

user state migration prototype.

Background & Project Goal System Design

Future Improvement

• Streaming state migration: To handle how to migrate the 

varying state of application.

• Multi-user scenario: Only migrate user associated states 

while keeping others as is.

• Migration Detection: Integrate with a real orchestrator to 

decide when to migrate the service.

• Trim a minimum set of exposed APIs.

• Design a workable communication pipeline between module, 

application and client.

• Adapt client app to maintain user session transfer.

• Add light & heavy state to the App

Challenge

Fig. 1: Sandwich Case Study

Solution:

• A state migration module MigrateEngine [Github] [Docker].

• Expose minimal APIs to application to participate in state 

transfer (e.g. set which state to be extract / how to merge).

• Able to migrate both light state (user progress) & heavy 

state (video frames).

• Automatically re-connect user session to new cloudlets.

Case Study: Gabriel-Sandwich

“Kids building Sandwich toy in a moving car”

Project Overview

Conclusion

• User states can be migrated “back and forth” in different 

servers whenever the orchestrator instructs.

• Only expose Extract, Merge APIs and related signal 

protocol to the App.

• No performance overhead to original App.

• Can apply the module to other Gabriel Apps.

Related Work
1. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., & Warfield, A. (2005). Live migration of virtual 

machines. Symposium on Networked Systems Design and Implementation.

2. Gember, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S., & Akella, A. (2014). OpenNF: enabling 

innovation in network function control. Conference on Applications, Technologies, Architectures, and Protocols for 

Computer Communication.

3. Nadgowda, S.J., Suneja, S., Bila, N., & Isci, C. (2017). Voyager: Complete Container State Migration. 2017 IEEE 37th 

International Conference on Distributed Computing Systems (ICDCS), 2137-2142.

4. M. Satyanarayanan, T. Eiszler, J. Harkes, H. Turki and Z. Feng, "Edge Computing for Legacy Applications," in IEEE 

Pervasive Computing, vol. 19, no. 4, pp. 19-28, 1 Oct.-Dec. 2020, doi: 10.1109/MPRV.2020.3026229. 

Wearable Device

User Assistance
“Now put a piece of bread on the lettuce”

Client Device
(Running Gabriel-Client App)

Sandwich Service

Cloudlet

Sandwich App Migrate

Engine

#1 Cloudlet
(Ubuntu18.04, GPU-enabled)

#2 Cloudlet

(Closer to User)

Orchestrator

Stream

& Result
(Websocket)

Migrating State
(Websocket + ProtoBuf)

Migrating

State

State 

Pre-Migration Connection

Connection only 

when migrating the state

Post-Migration Connection

Migration Workflow

Client
#1 

Sandwich App
#1 

Migrate Engine 
#2 

Migrate Engine Orchestrator
#2

Sandwich App

1.Old Connection
2. “Start Migration” Request 

+ New Cloudlet Address 

3. START_MIGRATE

4. Use Extract() callback 

API to extract user state

6. State
7. State

8. 

START_MERGE

+ State

9. Use Merge() callback 

API to merge user state

10. Finished
11. Finished

12. FINISH_MIGRATE

13. Clean State

14. “Migrate 

Session” Request 

+ New Cloudlet 

Address

15. New Connection

Transfer Design

State Type Example Migration Method

Light State User Progress ProtoBuf / Pickle

File State Recording Frames 

file

Rsync or Websocket

Session Client Side Reconnect

User Progress State on Cloudlet:

https://github.com/Blickwinkel1107/gabriel-sandwich
https://hub.docker.com/repository/docker/blickwinkel1107/gabriel-sandwich-os

