
Fundamentals of Programming &
Computer Science

CS 15-112
OOP – Part 1

Hend Gedawy

What we have been
doing so far

Main
Program

circle_area

circle_perimeter

triangle_area

triangle_perimeter

distance

radius

radiusvertices

vertices

An Alternative Approach

Main
Program

circle_area

circle_perimeter

triangle_area

triangle_perimeter

distance

Circle Triangleradius

radiusvertices

vertices

radius
vertex1
vertex2
vertex3

area()
perimeter()

area()
perimeter()

An Alternative Approach

Main
Program

circle_area

circle_perimeter

triangle_area

triangle_perimeter

distance

Circle Triangleradius

radiusvertices

vertices

radius
vertex1
vertex2
vertex3

area()
perimeter()

area()
perimeter()

Your program is divided into parts
Functions

Classes

Object Oriented Programming
(OOP) Approach

5

Photo Credit

mailto::%20https://medium.com/@singhamritpal49/object-oriented-programming-9beb509d4fcf
mailto::%20https://medium.com/@singhamritpal49/object-oriented-programming-9beb509d4fcf

Classes VS Objects/Instances

Photo Credit

mailto::%20https://medium.com/@singhamritpal49/object-oriented-programming-9beb509d4fcf
mailto::%20https://medium.com/@singhamritpal49/object-oriented-programming-9beb509d4fcf

Classes _ Objects/Instances

7

Acts as a template for
a generic object. Instances

Photo Credit

https://towardsdatascience.com/explaining-python-classes-in-a-simple-way-e3742827c8b5

you have already been using OOP

You have been using Built-in Objects in
Python

9

Class Object/Instance

str

int

list

“Hello”

5

[1,2,3,4]

You have been using Built-in Objects in
Python

10

Class Object/Instance

str

int

list

“Hello”

5

[1,2,3,4]

(are also Types)

An instance of type str

An instance of type int

An instance of type list

(values of a given class or type)

You have been calling methods on
these objects

11

s = 'This could be any string!’

We call methods using s.method()…

print(s.upper()) # upper is a string method, called using the . Notation
we say that we "call the method upper on the string s"

print(s.replace('could', 'may')) # some methods take additional
arguments

… rather than function(s):
print(len(s)) # len is a function

Functions Versus Methods

f(_) is a Function

12

obj.m(_) is a Method

len(L)

sorted(L)

max(n1, n2, n3..)

abs(n)

range(n)

sum(L)

s.upper()

l.append(x)

d.clear()

l.count(x)

s1.update(s2)

l.sort()
We use the dot
notion to call a
method on an

object

Objects

Creating Your Own Objects

• Properties?
• What data defines your Object?

• Methods?
• How do you plan to use the object in your code?

15

Properties

16

Create your own class:
class Dog(object):
 # define properties and methods of a generic dog here

a class must have a body, even if it does nothing, so we will
use 'pass' for now...
pass

Creating Empty Class & Instances

Verify the type of these instances:
print(type(d1)) # Dog (actually, class '__main__.Dog’)
print(isinstance(d2, Dog)) # True

Create instances of our class:
d1 = Dog()
d2 = Dog()

17

Properties
Setting and Getting
Instances Properties

Set and get properties (aka 'fields' or 'attributes') of these instances:
d1.name = 'Dot’
d1.age = 4
d2.name = 'Elf’
d2.age = 3
print(d1.name, d1.age) # Dot 4
print(d2.name, d2.age) # Elf 3

Create your own class:
class Dog(object):
 # define properties and methods of a
generic dog here

a class must have a body, even if it does nothing, so we
will
use 'pass' for now...
pass

Create instances of our class:
d1 = Dog()
d2 = Dog()

18

Properties
Preloading Instances

w/ Properties
(using Constructors)

def constructor(dog, name, age):
 # pre-load the dog instance with the given name and age:

dog.name = name
dog.age = age

d1 = Dog('fred', 4) # now d1 is a Dog instance with name 'fred' and age 4

def __init__(dog, name, age):
 # pre-load the dog instance with the given name and age:

dog.name = name
dog.age = age

def __init__(self, name, age):
 # pre-load the dog instance with the given name and age:

self.name = name
self.age = age

d2 = Dog('Elf', 3)
print(d1.name, d1.age) # Dot 4
print(d2.name, d2.age) # Elf 3

class Dog(object):

19

Methods

20

Methods
1) Start with a Function

class Dog(object):

 def __init__(self, name, age):
 self.name = name
 self.age = age

Here is a function we will turn into a method:
def sayHi(dog):
 print(f'Hi, my name is {dog.name} and I
am {dog.age} years old!’)

d1 = Dog('Dot', 4)
d2 = Dog('Elf', 3)
sayHi(d1) # Hi, my name is Dot and I am 4 years old!
sayHi(d2) # Hi, my name is Elf and I am 3 years old!

21

Methods
2) Turn it into Methodclass Dog(object):

 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Now it is a method (simply by indenting it inside the class!)
 def sayHi(dog):
 print(f'Hi, my name is {dog.name} and I am {dog.age} years old!’)

d1 = Dog('Dot', 4)
d2 = Dog('Elf', 3)

Notice how we change the function calls into method calls:
d1.sayHi() # Hi, my name is Dot and I am 4 years old!
d2.sayHi() # Hi, my name is Elf and I am 3 years old!

22

Methods
2) Turn it into Methodclass Dog(object):

 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Now it is a method (simply by indenting it inside the class!)
 def sayHi(dog):
 print(f'Hi, my name is {dog.name} and I am {dog.age} years old!’)

d1 = Dog('Dot', 4)
d2 = Dog('Elf', 3)

Notice how we change the function calls into method calls:
d1.sayHi() # Hi, my name is Dot and I am 4 years old!
d2.sayHi() # Hi, my name is Elf and I am 3 years old!

23

Methods
2) Turn it into Methodclass Dog(object):

 def __init__(self, name, age):
 self.name = name
 self.age = age

 # Use self keyword to represent the current instance
 def sayHi(self):
 print(f'Hi, my name is {dog.name} and I am {dog.age} years old!’)

d1 = Dog('Dot', 4)
d2 = Dog('Elf', 3)

d1.sayHi() # Hi, my name is Dot and I am 4 years old!
d2.sayHi() # Hi, my name is Elf and I am 3 years old!

24

More Methodsclass Dog(object):

 def __init__(self, name, age):
 self.name = name
 self.age = age

 def sayHi(self):
 print(f'Hi, my name is {dog.name} and I am {dog.age} years old!’)

 # This method takes a second parameter -- times
 def bark(self, times):
 print(f'{self.name} says: {"woof!" * times}')

d = Dog('Dot', 4)

d.sayHi() # Hi, my name is Dot and I am 4 years old!
d.bark(1) # Dot says: woof!
d.bark(4) # Dot says: woof!woof!woof!woof!

 self.woofCount = 0 # We initialize the property in the constructor!

 self.woofCount += times # Then we can set and get the property in this method

Practice

25

Write the class SpiderMan to pass the test cases shown below.
Do not hardcode against the testcase values, though you can assume

the testcases and comments cover the needed functionality.

• What does the constructor take?
• What properties?

• What methods is the code expecting you to implement ?
• What properties are these methods getting and setting/modifying?

Advantages
of Classes

and
Methods

Encapsulation
•Organizes code
 A class includes the data and methods for that class.
•Promotes intuitive design
 Well-designed classes should be intuitive, so the data and methods in the class match
commonsense expectations.
•Restricts access

•len is a function, so we can call len(True) (which crashes)
•upper is a method on strings but not booleans, so we cannot even call True.upper()

Photo Credit

https://www.simplilearn.com/tutorials/java-tutorial/java-encapsulation
https://www.simplilearn.com/tutorials/java-tutorial/java-encapsulation

Polymorphism

The same method name can run different code based on type.

28

class Dog(object):
 def speak(self):
 print('woof!’)
class Cat(object):
 def speak(self):
 print('meow!’)

for animal in [Dog(), Cat()]:
 animal.speak() # same method name, but one

 woofs and one meows!

Photo Credit

https://codegym.cc/groups/posts/polymorphism-in-java
https://codegym.cc/groups/posts/polymorphism-in-java

Methods

More

Equality Testing

Shouldn’t a1= a2??

__ eq __
Equality Testing

The __eq__ Method:
• Returns True if the object is equal to another object (other)
• Python uses it for testing equality of two objects

__ eq __
Equality Testing

Here we don't crash on unexpected types of other

Converting to String

Converting to String
__ str__

The __str__ method tells Python how to convert the object to a string,
but it is not used in some cases (such as when the object is in a list):

Converting to String
__ repr __

The __repr__ method is used inside lists (and other places)

Recap: Some Special Methods
• __init__: constructor, initializer

• Define initial values for the properties when an object is created
• It does NOT return any meaningful value

• • __repr__:
• Returns a string
• Python uses it to convert an object to a string

• E.g., print

• • __eq__: comparator
• Returns True if the object is equal to another object
• Python uses it for testing equality

Practice

37

Write the classes SpiderMan to pass the test cases shown below.
Do not hardcode against the testcase values, though you can

assume the testcases and comments cover the needed functionality.

• What special methods is the code expecting you to implement ?
• What is the expected behavior or outcome of these methods?

Recap
• Class = Properties + Methods
• Class vs Object
• Functions vs Methods
• How to define a class
• How to instantiate a class

• Using constructor (__init__) to preload instances with attribute values
• How to set/get properties of instances
• How to create and call methods on instances
• Special methods

• __eq__(self, other)
• __repr__(self)
• __hash__(self)

Lists VS Sets Operations
Efficiency - Review

Inserting Elements in a List

40

3924174164 Insert

LIST

39 24 1 74 16 4

Inserting Elements in Sets
& Hashing

41

def hash(n):
Return n%10

1

2

3

4

5

6

7

8

0

9

BUCKETS

Hash Function

3924174164

Insertion Steps:

1) Hash (find the bucket)

2) Once in the bucket, perform
Equality Testing

• Compare the element to each
existing element in the bucket

• If it doesn’t exist, add it

Collision

If I try to Insert a duplicate

42

74 Insert def hash(n):
Return n%10

Hash Function

Insertion Steps:

1) Hash (find the bucket)

2) Once in the bucket, perform
Equality Testing

• Compare the element to each
existing element in the bucket

• If it doesn’t exist, add it

Looking Up an Element in a List

43

4 Lookup

LIST

39 24 1 74 16 4

Equality Testing
Compare the value to each
existing element in the list.

If it found, return it

My Search Space

Looking Up an Element in a Set

44

4 Lookup def hash(n):
Return n%10

Hash Function

Lookup Steps:

1) Hash (find the bucket)

2) Once in the bucket, perform
Equality Testing

• Compare the value to each
existing element in the bucket

• If found, return it

Looking Up in Lists Vs Sets
(Search Space)

45

39 24 1 74 16 4LIST

24 74 4

All Elements

Elements Inside the bucket
with the same hash value SET

Target Lookup

Looking Up in Lists Vs Sets
(As Input Size Increases)

46

LIST

SET

Sets & Bad Hash Functions

47

def hash(n):
Return n%10

1

2

3

4

5

6

7

8

0

9

BUCKETS

Hash Function

4167412439

Sets & Bad Hash Functions

48

def hash(n):
Return n%10

1

2

3

4

5

6

7

8

0

9

BUCKETS

Hash Function

4167412439
4 Lookup

Lookup Steps:

1) Hash (find the bucket)

2) Once in the bucket, perform
Equality Testing

• Compare the value to each
existing element in the bucket

• If found, return it

This is as
inefficient
as Lists…

Using Objects w/ Sets &
Dictionaries

Using Objects w/ Sets & Dictionaries

Objects do not seem to hash right by default

Using Objects w/ Sets & Dictionaries
__hash__ and __eq__

51

The __hash__ method tells Python how to hash the object.

The properties you choose to hash on should be immutable types and
should never change (so hash(obj) is immutable).

For sets and
dictionaries to work
properly, whenever
you add hash, you

need to add eq
method

Using Objects w/ Sets & Dictionaries
A better (more generalized) approach

52

You can define the method getHashables that packages the things you want to hash into a tuple,
 and then you can use a more generic approach to __hash__

Hash attributes that will not
change later in your program

53

name=
“Freddie”

age= 5

HASH (
(name, age)

)

X

Obj1

Y

X

Obj1

54

name=
“Freddie”

age= 5

HASH (
(name, age)

)

X

Obj1.name=
“Cookie”

name=
“Cookie”

age= 5
Y

Obj1

Obj1 Y

X

Obj1

Obj1 is not in
the set !!!!

Hash attributes that will not
change later in your program

Fraction Class Demo

GCD

56

• gcd(123, 36) #x, y
• return gcd(36, 15) #y, x%y

• return gcd(15, 6)
• return gcd(6, 3)

• return gcd(3, 0) # y=0
• return 3 # x

The greatest common divisor is the largest
number that will divide evenly into both the

numerator and denominator.

Practice- Simplified Fraction Class

Write the class Fraction so
that the test code runs as
specified. Do not hardcode
against the values used in
the testcases, though you
can assume that the
testcases cover the needed
functionality. You must use
proper OOP design
//Note: You don’t need to
deal with 0 or negatives for
now

57

You will need to reduce
fractions (using gcd)

upon creation

	Fundamentals of Programming & Computer Science�CS 15-112�
	What we have been doing so far
	An Alternative Approach
	An Alternative Approach
	Object Oriented Programming �(OOP) Approach
	Classes VS Objects/Instances
	Classes _ Objects/Instances
	you have already been using OOP
	You have been using Built-in Objects in Python
	You have been using Built-in Objects in Python
	You have been calling methods on these objects
	Functions Versus Methods
	Objects
	Creating Your Own Objects
	Slide Number 15
	Creating Empty Class & Instances
	Properties�Setting and Getting Instances Properties
	Properties�Preloading Instances w/ Properties �(using Constructors)
	Slide Number 19
	�Methods�1) Start with a Function
	�Methods�2) Turn it into Method
	�Methods�2) Turn it into Method
	�Methods�2) Turn it into Method
	�More Methods
	Practice
	Advantages of Classes and Methods
	Encapsulation
	Polymorphism
	Methods
	Equality Testing
	__ eq __ �Equality Testing
	__ eq __ �Equality Testing
	Converting to String
	Converting to String�__ str__
	Converting to String�__ repr __
	Recap: Some Special Methods
	Practice
	Recap
	Lists VS Sets Operations Efficiency - Review
	Inserting Elements in a List
	Inserting Elements in Sets �& Hashing
	If I try to Insert a duplicate
	Looking Up an Element in a List
	Looking Up an Element in a Set
	Looking Up in Lists Vs Sets�(Search Space)
	Looking Up in Lists Vs Sets�(As Input Size Increases)
	Sets & Bad Hash Functions
	Sets & Bad Hash Functions
	Using Objects w/ Sets & Dictionaries
	Using Objects w/ Sets & Dictionaries
	Using Objects w/ Sets & Dictionaries�__hash__ and __eq__
	Using Objects w/ Sets & Dictionaries�A better (more generalized) approach
	Hash attributes that will not change later in your program
	Slide Number 54
	Fraction Class Demo
	GCD
	Practice- Simplified Fraction Class

