
Carnegie Mellon University in Qatar

CMU Graphics Guide v2
Including General 15-112 Notes

Authors: Jacob, Ebil; Hajizada, Salman.
Co-Author: Kumar, Ravin.
Reviewed by: Kumar, Ravin; Shikfa, Mohamed.

Publication date:
2023

Document Version
Peer-reviewed version

Citation for published version (APA):
Jacob, E., & Hajizada, S. (2023). CMU Graphics Documentation. Carnegie
Mellon Student Publications (No. 1)

CMU Graphics Guide

Table of Contents

Table of Contents... 2

Model View Controller Outline...3

Model...5

Controllers.. 6

View... 8

Drawing functions.. 8

Alignment...10

Color.. 11

Miscellaneous built-in functions... 12

Additional 15-112 notes... 13

Collision detection.. 13

Pausing and taking steps...15

Timing events...15

List unpackingwith polygons...15

2D List board... 16

Get cell from coordinates... 17

Select cell withmouse.. 17

Move cell selectionwith keys...17

Animation questions strategy..18

References..19

Bonus...20

2

CMU Graphics Guide

ModelViewControllerOutline

MVC (Model View Controller) is an approach used in graphics and animation.

3

CMU Graphics Guide

View

● Draws elements

● Cannot change themodel

● Is never called directly

Model

● Stores all data for the program

● Updated by controllers

Controllers

● Can change the data in themodel

● Cannot change the view

● Are never called directly

MVCViolation

● Breaking any of the rules above results in a runtime error

● This crashes the program

4

CMU Graphics Guide

Model

Asmentioned previously, themodel stores the information of the app.

It is stored inside the app object and its attributes are accessed through

app.[attribute]

Some attribute names are “reserved” i.e. you cannot name an attribute using

these names.

#reserved attributes

app.width # Width of canvas

app.height # Height of canvas

app.stepsPerSecond # Steps per second (see controllers

for more). Default is 30

app.background # Sets background color

Otherwise, you can use any attribute name youwant

#other

app.x

app.y

app.camelCase

app.hello123

5

CMU Graphics Guide

Controllers

These functions are never called directly. Each has a specific purpose.

Must have the same order and number of parameters

def onAppStart(app):

"""

Runs once when app starts

"""

def onMousePress(app, mouseX, mouseY):

"""

Runs every time a mouse is clicked

"""

#passes mouse coordinates into parameters

def onMouseRelease(app, mouseX, mouseY):

"""

Runs every time a mouse is released

"""

def onMouseMove(app, mouseX, mouseY):

"""

Runs when mouse isn’t pressed and moved

"""

def onMouseDrag(app, mouseX, mouseY):

"""

Runs when mouse is pressed and moved

"""

6

CMU Graphics Guide

key is passed into parameters (case-sensitive)

escape, left, right, up, down, space (shift doesn’t

display)

def onKeyPress(app, key):

"""

Runs when a key is pressed

"""

def onKeyHold(app, keys : list):

"""

Runs when keys are held down

"""

def onKeyRelease(app, key):

"""

Runs when a key is released

"""

def onStep(app):

"""

Runs a certain amount of times per second

Frequency is determined by app.stepsPerSecond

"""

The name of the parameters could be changed but the order and number cannot

7

CMU Graphics Guide

View

The view and all of its helper functions are called inside this function:

def redrawAll(app):

Drawing functions

drawRect(left, top, width, height,
fill="color", border="color",
borderWidth=2, opacity=100,
rotateAngle=0)

draws it from the left-top corner of the rect

drawLabel(string, centerX, centerY,

size=12, font="arial",

bold=False, italic=False,

fill="color", border="color",

borderWidth=2, opacity=100,

rotateAngle=0)

drawOval(centerX, centerY, width, height,

fill="color", border="color",

borderWidth=2, opacity=100,

rotateAngle=0)

drawCircle(centerX, centerY, radius,

fill="color", border="color",

borderWidth=2, opacity=100,

rotateAngle=0)

8

CMU Graphics Guide

drawLine(x1, y1, x2, y2,

lineWidth=1,

dashes=False or tuple[dashWidth, dashGap],

arrowStart=False, arrowEnd=False,

fill = "color", border = "color", opacity=100)

x1, y1 are start of line, 2 is end of line

adds arrow at start or end of line

drawRegularPolygon(centerX, centerY, radius, noOfPoints,

fill = "color", border = "color",

borderWidth=2, opacity=100,

rotateAngle=0)

“radius is the distance from the center to any vertex”

(R. Kumar, personal communication, September 25, 2023)

drawStar(centerX, centerY, radius, noOfPoints,

roundness=0, fill = "color", border = "color",

borderWidth=2,opacity=100, rotateAngle=0)

roundness is 0 to 100

if roundness == 100 then the star looks like a polygon

with noOfPoints * 2 sides

drawArc(centerX, centerY, width, height,

startAngle, sweepAngle,

fill = "color", border = "color", borderWidth=2,

opacity=100, rotateAngle=0)

since arc is a part of an oval, first 4 args are the

same as oval

angles are in anti-clockwise direction

sweepAngle = 360 fills the entire arc

9

CMU Graphics Guide

getImageSize(url)

returns a tuple with x,y dimensions

drawImage(url, left, top, width=int, height=int)

Notice how the coordinates specified in the parameters typically represent

where the center of the shape will be located, except rectangles where it shows

its top-left corner and linewhere it shows the two endpoints..

Alignment

As mentioned above, most shapes auto-align to the center, i.e. the center of the

shape is drawn at the coordinates. This can be changedwith another property:

align = "direction"

The value can be determinedwith this diagram:

10

CMU Graphics Guide

Color

There are a number of built-in colors that can be used, such as “red”, “blue”,

“yellow”, etc. However, if youwant a specific color, the below function should be

used:

rgb(redValue, greenValue, blueValue)

Each value is an int 0 - 255 inclusive

If instead of one color you would want a gradient, the following function should

be used:

gradientColor = gradient(color1, color2, ...,

start="center")

Produces a gradient using several colors in a certain

direction

At least 2 colors required

(Kumar, personal communication, September 25, 2023)

11

CMU Graphics Guide

Miscellaneousbuilt-in functions

creates a sound object

track = Sound(“url”)

plays a sound object

track.play(loop=False, restart = False)

pauses sound

track.pause()

returns distance between points (x1, y1) and (x2, y2)

distance(x1, y1, x2, y2) -> distance (pixels)

returns angle from point (x1, y1) to (x2, y2), 0 being

straight up

angleTo(x1, y1, x2, y2) -> angle (degrees)

returns a point a number of pixels from (x1, y1)

in the given direction(angle)

getPointInDir(x1, y1, angle, length) -> (x2, y2)

returns a properly rounded value

rounded(float)

creates a list with x rows and y columns

makeList(x, y)

12

CMU Graphics Guide

Additional 15-112 notes

Collisiondetection

● Point - Circle

If distance from center <= radius, point is inside circle

Takes point coordinate x, y

Returns True if point inside circle of

Center cx, cy. Radius r

def isPointInCircle(x, y, cx, cy, r):

if distance(x, y, cx, cy) <= r:

return True

else:

return False

● Circle - Circle

The circles intersect if the distance between their centers is no greater

than the sumof their radii.

Returns true if circle 1 and circle 2 intersect

Circle 1 - center x1, y1, radius r1

Circle 2 - center x2, y2, radius r2

def circleCollision(x1, y1, r1, x2, y2, r2):

if distance(x1, y1, x2, y2) <= r1 + r2:

return True

else:

return False

13

CMU Graphics Guide

● Rectangle-Rectangle

The right edge of rectangle1 is on or to the right of the left edge of

rectangle0. That is, (right1 >= left2).

The right edge of rectangle0 is on or to the right of the left edge of

rectangle1. That is, (right2 >= left1).

The bottom edge of rectangle1 is on or below the top edge of rectangle0.

That is, (bottom1 >= top2).

The bottom edge of rectangle0 is on or below the top edge of rectangle1.

That is, (bottom2 >= top1)

#Takes in dimensions of 2 rectangles

#Returns true if they overlap

def rectanglesOverlap(left1, top1, width1, height1,

left2, top2, width2, height2):

bottom1 = top1 + height1

bottom2 = top2 + height2

right1 = left1 + width1

right2 = left2+width2

if bottom1 >= top2 and bottom2 >= top1 and\

right1 >= left2 and right2 >= left1:

return True

else:

return False

14

CMU Graphics Guide

Pausingand taking steps

def onStep(app):

if not app.paused:

takeStep(app)

def takeStep(app): # Keeps running if app is not

paused

app.counter += 1

def onKeyPress(app, key):

if key == 'p': # pauses the app

app.paused = not app.paused

elif key == 's' and app.paused: # takes a step
takeStep(app)

Timingevents

#30 times per second by default

def onStep(app):

app.timer += 1

If you want to run it 5 times per second

desired = 5

interval = app.stepsPerSecond // desired

if app.timer % interval == 0:

runCode()

List unpackingwithpolygons

store the points in a list:

points = [100, 100, 50, 200, 300, 300, 250, 50]

use *points to unpack the values

and draw the polygon using this list:

15

CMU Graphics Guide

drawPolygon(*points, fill='cyan', border='black')

16

CMU Graphics Guide

2DList board

#an example code of how a board can be set up and drawn

board variables (assume board starts at 0,0)

app.rows

app.cols

app.boardWidth

app.boardHeight

Calculates cell size based on board dimensions

def getCellSize(app):

width = app.boardWidth / app.cols

height = app.boardHeight / app.rows

return (width, height)

Calculate coordinates of cell based on row and column

def getCellCoordinate(app, row, col):

width, height = getCellSize(app)

x = col * width

y = row * height

return (x, y)

Draws a cell

def drawCell(app, row, col):

x, y = getCellCoordinate(app, row, col)

width, height = getCellSize(app)

drawRect(x, y, width, height)

Draws the board

def drawBoard(app):

for row in range(app.rows):

for col in range(app.cols):

drawCell(app, row, col)

17

CMU Graphics Guide

Get cell fromcoordinates

#Returns row and col selected based on coordinates

def getCell(app, x, y):

dx = x - app.boardLeft

dy = y - app.boardTop

row = dy // app.cellHeight

col = dx // app.cellWidth

if (0 <= row < app.rows) and (0 <= col < app.cols):

return (row, col)

else: # if coordinates out of bounds

return None

Select cellwithmouse

#Stores the cell row and col selected with mouse

def onMousePress(app, x, y):

selectedCell = getCell(app, x, y)

if selectedCell != None:

app.selection = selectedCell

#If click is outside board, store None

else:

app.selection = None

Move cell selectionwithkeys

When in onKeyPress, passed in with different parameters

def moveSelection(app, drow, dcol): # e.g. (app, -1, 0) if up

row, col = app.selection

newRow = (row + drow) % app.rows

newCol = (col + dcol) % app.cols

app.selection = (newRow, newCol)

18

CMU Graphics Guide

Animationquestions strategy

1. Write the onStep function

- Write down the logic withoutworrying about variables existing or

not (e.g. you canwrite down ‘app.cx += 1’ without app.cx existing)

- You can also create any helper functions that you need

2. Write the redrawAll function

- What needs to be drawn to the screen every frame?

- You can try to sketchwhat you need to display to help

- What could change based on the state of the program? A pause

screen, a gameover screen?

- Again, ignore variables not existing

3. Nowwrite the onAppStart function

- Havingwritten the onStep and redrawAll function you should now

knowwhat variables you need to initialize

- If the program should restart, write a helper function (e.g.

restartApp) that sets the app values

4. Write any needed remaining controller functions

- e.g. onMousePress, onKeyPress, onKeyHold, etc.

- Should handle all input the programneeds

19

CMU Graphics Guide

References

CMU CS Academy. (n.d.). https://academy.cs.cmu.edu/docs

20

https://academy.cs.cmu.edu/docs

CMU Graphics Guide

Bonus

If the distance function is too complicated to understand, we’ve devised a simpler way to

calculate the distancewithout using lists. You can use the formula below:

def distance(x1, y1, x2, y2):

return math.dist(range(x1, y1+1 if y1 > x1 else y1-1,

y1-x1) if y1 - x1 != 0 else map(int, (str(x1) +

" " + str(y1)).split()) , range(x2, y2+1 if y2 >

x2 else y2-1, y2-x2) if y2 - x2 != 0 else

map(int, (str(x2) + " " + str(y2)).split()))

…or just use this:

def distance(x1, y1, x2, y2):

return math.dist(map(int, (str(x1) + " " +

str(y1)).split()), map(int, (str(x2) + " " +

str(y2)).split()))

! If anybody can explain what these functions do, you will

receive a prize of 1 double-up drink of your choice. !

21

