Name: Andrew Id:

15-112 Spring 2026 Quiz 4
Up to 25 minutes. No calculators, no notes, no books, no computers. Show your work!
Do not use dictionaries, sets, try/except, or recursion on this quiz.

1. (6 points) Code Tracing: Lists:

def CT(L):
L.append(99)
L =1L+ [10]
sorted (L)
print (L)
L2 = L[:]
print(L2 is L)
print(L2 == L)
L2 += [8]
print(L2)
L2[2:4] = [5, 6]
L2.reverse()
print(L2)
L3 =L
L3.pop()

L =1[1, 2, 3]
CT(L)
print (L)

2. (6 points) Fill-in The Blanks: Theater Seating
Fill in the code for the function drawSeating(app,seating) to draw a theater seating
grid. The function takes as input the comma-separated string seating that specifies for
each row in the theater, which cells:
e Represent an available seat "O"
e Represent an occupied seat "X"
e Represent an aisle space (no seat) "A"

For example, drawSeating(app, "000AOOO,00XAOOX,AAAAAAA,XO0OAOOO,000A0O0Q") draws
the theater seats in Figure 1. In this case:

e The first row, "OOOAOOQ", has three available seats, one aisle space, and three
available seats.

e The second row, "OOXAOOX", has two available seats, one occupied seat, one aisle
space, two available seats, and one occupied seat.

£ CMU CS Academy = o X

00 01 02 04 05 06

. 31 32 34 35 36

40 41 42 44 45 46

Figure 1: drawSeating(app, "000AOOO,00XAOO0X,AAAAAAA,XO0ACOO,0O00ADCO")

Note: Seats (O and X) should be drawn as smaller squares with white padding around
them inside each grid cell. In contrast, aisle cells (A) should not have padding — the aisle
background color should fill the entire grid cell; Figure 1.

You can assume that app.width==app.height. You can assume that cmu_graphics is
already imported and there is a function redrawAll (app) that will call your function.

(Question continues on the next page)

Page 2

def drawSeating(app, seating):
padding = 5
rowsList = []
for row in seats_str.strip() .split(","):
rowsList.append (row)

Number of columns and rows
numCols = len(_____ .)

numRows = len(____ _ _ o ___)

Calculate cellSize
cellW = app.width // ____________________________
cellH = (app.height * 0.9) // numRows
cellSize = min(cellW, cellH) # Use the smaller of the two to avoid going off-screen
for r in range(len(rowsList)):
rowString = rowsList[r]
for ¢ in range(len(rowString)):
char = rowStringlc]
Calculate top-left position of the cell

X =
YV =
Draw Aisle Background: Should fill the entire cell
if char == 'A':

drawRect(____________________ >)

if _
color = 'indianRed'

elif ____ ___ __ _ o ___
color = 'lightGreen'

if color != None: # Draw the Seat

The width/height of the drawn seat inside the cell,
should take padding into account
drawRect(x + padding, y + padding,________________________ ,

________________________ , fill=color, border='black')
Center the seat number label

drawLabel (____________ o _____ S)

, size=max(8, cellSize/4))

Page 3

3. (8 points) Free Response: Almost Palindrome
A list is an "almost palindrome" if removing exactly one element would make it a palindrome.
Write the function checkAlmostPalindrome(L) that takes a list L and returns:
e The index of the element that must be removed to make it a palindrome; if the list is
an almost palindrome.
e -1 if the list is not an almost palindrome (can’t be made panlindrome with one removal)

e -1 if the list is already a palindrome (since no removal is needed).

Your function must be non-destructive.

Consider the following test cases:

assert checkAlmostPalindrome([1, 2, 3, 3, 2, 1]) == -1 # Already palindrome
assert checkAlmostPalindrome([1, 2, 3, 1]) == # Remove 2

assert checkAlmostPalindrome([5, 1, 2, 3, 2, 1]) == 0 # Remove 5

Can't make palindrome with one removal

assert checkAlmostPalindrome([1, 2, 3, 4, 5]) == -

assert checkAlmostPalindrome([1, 1]) == -1 # Already palindrome

assert checkAlmostPalindrome([1, 2]) == -1 # Can't form palindrome

Hint: A good strategy is to try removing one element at a time and check

Page 4

Extra space for Problem 3.

Page 5

