
Name: Andrew Id:

15-112 Spring 2026 Quiz 4
Up to 25 minutes. No calculators, no notes, no books, no computers. Show your work!

Do not use dictionaries, sets, try/except, or recursion on this quiz.

1. (6 points) Code Tracing: Lists:
def CT(L):

L.append(99)
L = L + [10]
sorted(L)
print(L)
L2 = L[:]
print(L2 is L)
print(L2 == L)
L2 += [8]
print(L2)
L2[2:4] = [5, 6]
L2.reverse()
print(L2)
L3 = L
L3.pop()

L = [1, 2, 3]
CT(L)
print(L)



2. (6 points) Fill-in The Blanks: Theater Seating

Fill in the code for the function drawSeating(app,seating) to draw a theater seating
grid. The function takes as input the comma-separated string seating that specifies for
each row in the theater, which cells:

• Represent an available seat "O"

• Represent an occupied seat "X"

• Represent an aisle space (no seat) "A"

For example, drawSeating(app, "OOOAOOO,OOXAOOX,AAAAAAA,XOOAOOO,OOOAOOO") draws
the theater seats in Figure 1. In this case:

• The first row, "OOOAOOO", has three available seats, one aisle space, and three
available seats.

• The second row, "OOXAOOX", has two available seats, one occupied seat, one aisle
space, two available seats, and one occupied seat.

Figure 1: drawSeating(app, "OOOAOOO,OOXAOOX,AAAAAAA,XOOAOOO,OOOAOOO")

Note: Seats (O and X) should be drawn as smaller squares with white padding around
them inside each grid cell. In contrast, aisle cells (A) should not have padding — the aisle
background color should fill the entire grid cell; Figure 1.

You can assume that app.width==app.height. You can assume that cmu_graphics is
already imported and there is a function redrawAll(app) that will call your function.

(Question continues on the next page)

Page 2



def drawSeating(app, seating):
padding = 5
rowsList = []
for row in seats_str.strip().split(","):

rowsList.append(row)

### Number of columns and rows
numCols = len(______________________________)

numRows = len(______________________________)

### Calculate cellSize
cellW = app.width // ____________________________
cellH = (app.height * 0.9) // numRows
cellSize = min(cellW, cellH) # Use the smaller of the two to avoid going off-screen
for r in range(len(rowsList)):

rowString = rowsList[r]
for c in range(len(rowString)):

char = rowString[c]
### Calculate top-left position of the cell

x = ______________________________________________

y = ______________________________________________
### Draw Aisle Background: Should fill the entire cell
if char == 'A':

drawRect(____________________, ____________________,

____________________, ____________________, fill='silver', opacity=30)
color = None

if __________________________:
color = 'indianRed'

elif ________________________:
color = 'lightGreen'

if color != None: # Draw the Seat
# The width/height of the drawn seat inside the cell,

# should take padding into account
drawRect(x + padding, y + padding,________________________,

________________________, fill=color, border='black')

# Center the seat number label

drawLabel(________________________,________________________,

________________________, size=max(8, cellSize/4))

Page 3



3. (8 points) Free Response: Almost Palindrome

A list is an "almost palindrome" if removing exactly one element would make it a palindrome.

Write the function checkAlmostPalindrome(L) that takes a list L and returns:

• The index of the element that must be removed to make it a palindrome; if the list is
an almost palindrome.

• -1 if the list is not an almost palindrome (can’t be made panlindrome with one removal)

• -1 if the list is already a palindrome (since no removal is needed).

Your function must be non-destructive.

Consider the following test cases:

assert checkAlmostPalindrome([1, 2, 3, 3, 2, 1]) == -1 # Already palindrome
assert checkAlmostPalindrome([1, 2, 3, 1]) == 1 # Remove 2
assert checkAlmostPalindrome([5, 1, 2, 3, 2, 1]) == 0 # Remove 5
# Can't make palindrome with one removal
assert checkAlmostPalindrome([1, 2, 3, 4, 5]) == -1
assert checkAlmostPalindrome([1, 1]) == -1 # Already palindrome
assert checkAlmostPalindrome([1, 2]) == -1 # Can't form palindrome

Hint: A good strategy is to try removing one element at a time and check

Page 4



Extra space for Problem 3.

Page 5


