
fullName:________________________ andrewID:_________________ section:___

15-112 F25
Practice Quiz1

This is the Practice Quiz1, part of Prep 2. In order to receive credit, you must simulate
taking this as if it was an actual quiz, and you must write your name on this paper and
hand this back in during lecture on 9/2. This Practice Quiz is graded based on
completion rather than correctness, but if we do not receive it immediately, or if you
have not demonstrated apparent effort, you will receive a zero on the assessment.

Before and during the practice quiz, you may not view any other notes, prior work,
websites or resources, including any form of AI. You may not communicate with
anyone else except for current 112 TAs or faculty during the assessment. All syllabus
policies apply.

Do not use strings, loops, sets, dictionaries, recursion, or anything
else disallowed in the original problem.

Do not open this or look inside (even briefly) before you are ready to
begin. Do not spend more than 30 minutes on this assessment.

Code Tracing

CT1[10 pts]:
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

import math

def ct1(x, y):
 print(math.ceil(x))
 print(math.floor(-x))
 print(type(True) == isinstance(int(y), int))

print(ct1(3.14, '5'))

CT2[10 pts]:
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

def ct2(x):
 print((x > 0) or (x/0 > 0))
 print((x > 0) and (x/0 > 0))
 return 42

print(ct2(1))

CT3[10 pts]:
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

def ct3(x, y):
 if x%10 == x//10:
 print('A', 10*y-x/10)
 x, y = y, x
 x **= 2
 if x > y:
 print('B', x, bool(y))
 else:
 print('C', -x, not bool(y))
 return isinstance(x, float)

print(ct3(11,3))

CT4[10 pts]:
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

def f(x):
 return x+x%10

def g(x):
 return f(x) + f(x+1)

def ct4(x):
 x = f(x)
 return f(g(x))

print(ct4(5))

Free Response
Your functions should work generally for the kinds of inputs specified in the problem statement, and
we may test your code using additional test cases. In graded quizzes, we will manually grade both of
these problems for partial credit if you do not pass all the test cases.

FR1[30pts]: distanceToMultipleOf10(n)

Write the function distanceToMultipleOf10(n) that takes a possibly-negative int n
and returns the distance (as an int) to the multiple of 10 nearest to n.

Here are some test cases for you:
 assert(distanceToMultipleOf10(60) == 0)
 assert(distanceToMultipleOf10(61) == 1)
 assert(distanceToMultipleOf10(65) == 5)
 assert(distanceToMultipleOf10(66) == 4)
 assert(distanceToMultipleOf10(1234567) == 3)
 assert(distanceToMultipleOf10(-1234567) == 3)

Write your answer on the following page

FR2[30pts]: isNearlyXor(f)

Background: the function xor(x, y) takes two booleans, x and y, and returns True
if x and y are not the same, and False otherwise. Here is a truth table for xor:
 x y xor(x,y)
 True True False
 True False True
 False True True
 False False False

We will say that a function is "nearly xor" (a coined term) if its truth table
differs from xor in exactly one row.

With that in mind, write the function isNearlyXor(f) that takes a function f,
where f takes two boolean values and returns a boolean value, and returns True if
f is nearly xor, and False otherwise.

Here are some test cases for you:

 def f1(x, y): return ((x and not y) or (not x and y)) # this is xor
 def f2(x, y): return (x or y)
 def f3(x, y): return (x and y)
 assert(isNearlyXor(f1) == False) # "xor" differs from "xor" in 0 rows
 assert(isNearlyXor(f2) == True) # "or" differs from "xor" only in the first row
 assert(isNearlyXor(f3) == False) # "and" differs from "xor" in 3 rows

Write your answer on the following page

​

