
fullName:_______________________________andrewID:_______________________________
recitationLetter:______

15-112 N22

Quiz1 version A
You MUST stop writing and hand in this entire quiz when instructed in lecture.

You may not unstaple any pages.
You may not use your own scrap paper. If you must use additional scrap paper, raise
your hand and we will provide some. You must hand this in with your paper quiz, and
we will not grade it.
Failure to hand in an intact quiz will be considered cheating. Discussing the quiz with
anyone in any way, even briefly, is cheating. (You may discuss it only once the quiz
has
been posted to the course website.)
You may not use any concepts (including builtin functions) we have not covered in the
notes this semester. Write the word 'waffle' at the top of this page
for one bonus
point.
You may not use strings, lists, indexing, tuples, dictionaries, sets, or recursion.
We may test your code using additional test cases. Do not hardcode.
Assume almostEqual(x, y) and roundHalfUp(n) are both supplied for you. You must
write all other helper functions you wish to use.

True or False [4pts ea]
Write only the whole word "True" or "False" (and not just T or F).

__________ TF1: The following line of code will crash:

	 	 print((9 // 7 == 2) and (2 / 0 == 1))

__________ TF2: The following line of code will crash:

	 	 print((9 // 7 == 2) or (2 / 0 == 1))

__________ TF3: The three basic error types are runtime, prime, and syntax.

__________ TF4: After the following lines of code, the value of x will be a float:

	 	 x = 5

	 	 x += 1.0

CT1: Code Tracing [10pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

def ct1(m):

 x = 1

 while x < 5:

 x += 2

 print('x =', x)

 for y in range(m, m+2):

 print('y =', y)

 x += y

 return x

print(ct1(1))

CT2: Code Tracing [10pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

def f(x):

 return 2 * x - 1

def g(x):

 return f(x + 3)

def ct2(x):

 print(f(x - 2))

 x -= 2

 print(g(x))

 x = 10 % x

 return f(g(x) % 10) // 2

print(ct2(4) + 10)

Free Response 1: isPerfectSquare(n) [32pts]
A perfect square is any non-negative number that can be formed by the product of an
integer with itself. For example, 3 * 3 == 9, so 9 is a perfect square. Also, 5 * 5 == 25,
so 25
is a perfect square. Write the function isPerfectSquare(n) which takes an
integer n (not
necessarily positive) and returns True if it is a perfect square,
and false otherwise.

Note: In addition to the restrictions on concepts we have not yet covered, you may not use
loops in this problem. Solutions that use loops will lose 5
points. Here are some test cases:

 assert(isPerfectSquare(0) == True)

 assert(isPerfectSquare(1) == True)

 assert(isPerfectSquare(2) == False)

 assert(isPerfectSquare(9) == True)

 assert(isPerfectSquare(-9) == False)

 assert(isPerfectSquare(121) == True)

 assert(isPerfectSquare(100000000**2) == True)

 assert(isPerfectSquare(100000000**2 - 1) == False)

Free Response 2: nthGregorPrime(n) [32pts]
We will say that a number is a "Gregor number" (a made-up term) if it is a positive
integer
where the count of each digit is less than or equal to the value of the digit itself. For
example, the digit 1 must not appear more than once, the digit 3 must not appear more
than 3 times, and the digit 6 cannot appear more than 6 times. 0 may not appear at all.
Here are some example Gregor numbers:
1, 333122, 492236134, 23213

However, these are not Gregor numbers because at least one digit appears too many
times:
11, 2232, 331233, 10, 555555

With this in mind, write the
function nthGregorPrime(n) that takes a non-negative int n
and returns the nth number
that is both a Gregor number and prime. You must also
write the helper functions isPrime(n)
and isGregorNumber(n), both of which take positive
integers. You may write additional
helper functions if you wish. Here are some test cases:

 assert(nthGregorPrime(0) == 2) # Watch out for off-by-one errors

 assert(nthGregorPrime(1) == 3)

 assert(nthGregorPrime(4) == 13)

 assert(nthGregorPrime(5) == 17)

 assert(nthGregorPrime(30) == 167)

You may continue your FR2 answer here, if you wish

bonusCT: Code Tracing [2pts]
This question is optional. Indicate what the following code prints. Place your answers (and
nothing else) in the box below.

def f(x): return x+5

def g(x): return f(x-3)

def h(x): return g(g(x)%f(x))

def bonusCt(f, g, x):

 if (x > 0):

 return bonusCt(g, h, -f(x))

 else:

 return f(g(h(x)))
print(bonusCt(g, f, 4))

