15-112 Spring 2023 Lecture 3/4

Quiz 8
27 minutes
Name:
Andrew ID: @andrew.cmu.edu
Section:

¢ You may not use any books, notes, or electronic devices during this quiz.

¢ You may not ask questions about the quiz except for language clarifications.

¢ Show your work on the quiz (not scratch paper) to receive credit.

e If you use scratch paper, you must submit it with your andrew id on it, and we will ignore it.

e All code samples run without crashing unless we state otherwise. Assume any imports are already
included as required.

¢ You may use almostEqual() and rounded() without writing them. You must write everything else.

e To receive any credit, you must not use 'for' or 'while' in any code you write on this quiz, and you
must use recursion properly.

1. Fill-in-the-blank [10 pts, 2 pts each]

For each of the following examples from the course notes, fill in the blank(s) with the missing code. Assume that
any required helper functions are already defined for you.

1.

def fibonacci(n):
if

return 1
else:
return fibonacci(n-1) + fibonacci(n-2)

def gcd(x, y):
Euclid's (very fast) algorithm:
ify == @:
return x
else:
return gcd(,)

def move(n, source, target, temp):
if n ==
return [(source, target)]
else:
return (move(n-1, source, temp, target) +
move(1, source, target, temp) +

move (> P >)

def solveTowersOfHanoi(n):
return move(n, 0, 2, 1)

4.

def quickSort(L):
if len(L) < 2:
return L
else:
smaller, pivot, larger = partition(L)

return +

5.

def mergeSort(L):
if len(L) < 2:
return L
else:
i = len(L)//2
sortedLeftHalf = mergeSort(L[:i])
sortedRightHalf = mergeSort(L[i:])

return

2. Code Tracing [15 pts, 5 pts each]
Indicate what these print. Place your answers (and nothing else) in the box next to each block of code.

def ctl(n):
if n ==
return ©
else:
return n**2 + cti(n//2)
print(ct1(5))

def ct2(s):
if len(s) < 2:
return s
else:

c = s[9]
d = s[-1]

t = s[1:-1]

return ct2(t) + c + d
print(ct2('abcde'))

def ct3(L):
if len(L) < 2:
return L
else:
i = len(L)//2
M= L[:1]
N =L[i:]

return ct3(M) + [sum(L)] + ct3(N)
print(ct3([1,2,3,4]))

3. FR: squarishCount(L) [35 pts]

Background: given a list L of integers, we will say that a value L[i] is "squarish" (a coined term) if L[i] == i%2. For
example, ifL=[0, 3, 2,9, 5, 4], the squarish values in L are L[0] and L[3], because L[0] == 0% and L[3] == 3%

With this in mind, and without using 'for' or 'while' loops, and using recursion properly, write the function
squarishCount(L), that takes a list L of integers and returns the number of squarish values in L.

Here is some test cases for you:
assert(squarishCount([@, 3, 2, 9
assert(squarishCount([0, 1, 4, 9
assert(squarishCount([1, 4, 9, 2

-

>,
16
,)

Note: you may want to use a wrapper function or something similar here.

4. FR: letterCounts|[s] [40 pts]

Without using 'for' or 'while' loops, and without using the 'count' method, write the recursive function
letterCounts(s) that takes a string s and returns a dictionary d mapping each letter in s to the count of the
number of times it occurs in's. Note that d should only contain uppercase keys, but the counts should include
both uppercase and lowercase letters. Non-letters should be ignored.

Here are some test cases for you:
assert(letterCounts('This is a test!!!")

{'T': 3, 'S': 3, "E': 1, 'A': 1, 'I': 2, 'H': 1})
assert(letterCounts('eE789') == { 'E': 2 })
assert(letterCounts('?!?@?#?@') == dict())

5. Bonus CT [5 pts, 2.5 pts each]
Indicate what these print. Place your answers (and nothing else) in the box next to each block of code.

def bonusCti1(x):
def f(x, y=None):
if y == None: y = x
return x + f(x, y-1) if y else ©
return f(x) + bonusCtl(x//2) if x else ©
print(bonusCt1(7))

def bonusCt2(L):
count = @
def f(L, i=0):

nonlocal count

ifi==0:1L=1L[:]
if i == len(L)-1: return L, False
else:

b = L[i] < L[i+1]

if b:

L[i], L[i+1] = L[i+1], L[i]
count += 1

L, bb = f(L, i+1)

return L, b or bb

def g(L):

L, b = f(L)

return g(L) if b else L
L = g(L)

return (L, count)
print(bonusCt2([2, 4, 1, 3]))

