

15-112 Spring 2023 Lecture 3+4
 Quiz 7 Handout

• Use this handout to complete quiz7.

• Submit this handout, but do not write on it.

def testLetterCounterClass():

 print('Testing LetterCounter class...', end='')

 # A "LetterCounter" instance is constructed with some target letters ('AB' in

 # the first example below). It is then given text (with the addText method),

 # and it counts the number of times any of those target letters appear

 # in the text (case-insensitively).

 lc1 = LetterCounter('AB')

 assert(lc1.getCount() == 0)

 assert(str(lc1) == "LetterCounter(letters='AB', count=0)")

 assert(str([lc1]) == "[LetterCounter(letters='AB', count=0)]")

 lc1.addText('A big cat!') # adding 2 As and 1 B

 assert(lc1.getCount() == 3)

 assert(str(lc1) == "LetterCounter(letters='AB', count=3)")

 lc1.addText('Another big one!') # adding 1 more A and 1 more B

 assert(lc1.getCount() == 5)

 assert(str(lc1) == "LetterCounter(letters='AB', count=5)")

 # Note that the letters are always displayed in alphabetical order,

 # and without duplicates, and always in uppercase, so:

 lc2 = LetterCounter('cbc') # counts the number of Bs or Cs in text

 # this is exactly the same as LetterCounter('BC')

 assert(lc2.getCount() == 0)

 assert(str(lc2) == "LetterCounter(letters='BC', count=0)")

 lc2.addText('A big cat!') # adding 1 B and 1 C

 assert(lc2.getCount() == 2)

 assert(str(lc2) == "LetterCounter(letters='BC', count=2)")

 # (continued on next page)

2

 # To add two LetterCounters, combine the letters they are counting (without

 # creating duplicates), and add their counts, so:

 lc3 = lc1 + lc2

 assert(lc3.getCount() == 7)

 assert(str(lc3) == "LetterCounter(letters='ABC', count=7)")

 print('Passed!')

End of testLetterCounterClass()

3

def testLineAndVerticalLineClasses():

 print('Testing Line and VerticalLine classes...', end='')

 line1 = Line((4, 5), (7, 1))

 assert(str(line1) == 'Line from (4, 5) to (7, 1)')

 assert(str([line1]) == '[Line from (4, 5) to (7, 1)]')

 # getLength returns the length between the endpoints of the line:

 assert(almostEqual(line1.getLength(), 5.0))

 # two lines are equal if their endpoints match in either order:

 assert(line1 == Line((4, 5), (7, 1)))

 assert(line1 == Line((7, 1), (4, 5)))

 # and they are not equal if either of their endpoints do not match:

 assert(line1 != Line((4, 5), (7, 0)))

 # and do not crash here:

 assert(line1 != 'yikes!')

 # The class VerticalLine is a subclass of Line.

 # A VerticalLine only takes one point (x, y) and makes a vertical line

 # from that point to the x axis:

 line2 = VerticalLine((3, 7))

 assert(str(line2) == 'VerticalLine from (3, 7) to (3, 0)')

 assert(almostEqual(line2.getLength(), 7))

 # Verify that it is a subclass

 assert(type(line2) == VerticalLine)

 assert(isinstance(line2, Line))

 # A VerticalLine can equal a Line if their endpoints match (in either order):

 line3 = Line((3, 0), (3, 7))

 assert(line2 == line3)

 # (continued on next page)

4

 # Lines can be added to sets:

 s = set()

 line4 = Line((4, 0), (4, 3))

 s.add(line4)

 assert(line4 in s)

 # Note that a line with the points in the other order still matches.

 # Be sure that hash(line4) == hash(line5). To do this, we suggest you

 # sort the endpoints before hashing them, though other approaches will

 # also work:

 line5 = Line((4, 3), (4, 0))

 assert(hash(line4) == hash(line5))

 assert(line5 in s)

 # This hash also has to match a VerticalLine that is equal to the Line in s:

 line6 = VerticalLine((4, 3))

 assert(hash(line4) == hash(line6))

 assert(line6 in s)

 print('Passed!')

End of testLineAndVerticalLineClasses()

15-112 Spring 2023 Lecture 3+4
 Quiz 7

32 minutes

Name: ___________________________________

Andrew ID: ___________________@andrew.cmu.edu

Section: _______

• You may not use any books, notes, or electronic devices during this quiz.

• You may not ask questions about the quiz except for language clarifications.

• Show your work on the quiz (not scratch paper) to receive credit.

• If you use scratch paper, you must submit it with your andrew id on it, and we will ignore it.

• All code samples run without crashing unless we state otherwise. Assume any imports are already
included as required.

• Do not use these topics: recursion.

• You may use almostEqual() and rounded() without writing them. You must write everything else.

Do not write below here

Question Points Score

1. FR: LetterCounter 50

2. FR: Line and VerticalLine 50

3. Bonus 5 (bonus)

TOTAL 100

 A

2

1. FR: LetterCounter Class [50 pts]

Write the LetterCounter class so that the test function (on a separate handout) works properly. To receive full
credit, you must not hardcode methods, and you must use OOP properly.

 A

3

This page is for your LetterCounter class.

 A

4

2. FR: Line and VerticalLine Classes [50 pts]

Write the Line and VerticalLine classes so that the test function (on a separate handout) works properly. To
receive full credit, you must not hardcode methods, and you must use OOP properly (for example, you must call
the super's __init__ method appropriately if you override its __init__ method).

 A

5

This page is for your Line and VerticalLine classes.

 A

6

3. Bonus [5 pts, 2.5 pts each]
Indicate what these print. Place your answers (and nothing else) in the box next to each block of code.

def bonusCt1(x, y):
 def inc(L):
 for i in range(y-1, -1, -1):
 L[i] += 1
 if L[i] < x:
 break
 else:
 L[i] = 0
 L = [0] * y
 L[-1] = 1
 z = 0
 while L != [0] * y:
 inc(L)
 z += 1
 return z
print(bonusCt1(3, 4))

def bonusCt2(j):
 code = '''
class A:
 def __init__(self, x): self.x = x
 def f(self): return self.x*10'''
 for i in range(j):
 A = chr(ord('A') + i)
 B = chr(ord('B') + i)
 code += f'''
class {B}({A}):
 def __init__(self, x): super().__init__({i+2}*x)
z = {B}(2).f()'''
 exec(code, globals()) # hint: this evaluates the given code
 return z
print(bonusCt2(3))

