
For Loops
15-110 – Monday 02/02

Announcements

• Check2 was due today

• Week1-2 revision deadline is Tuesday (tomorrow) at noon

• Start Hw2 early! It's heavier than Hw1
• On the assignment you'll start combining code constructs you've learned about before, so your

solutions will be more algorithmically complex.

• You're encouraged to attend small group sessions to get help with learning the course
content. In particular, the TAs will provide more help than usual on one of the Hw2
problems in small group sessions this week (drawIllusion). Contact your TA to learn
more!

• Quizlet2 on Wednesday
2

Learning Goals

• Use for loops when reading and writing algorithms to repeat actions a
specified number of times

• Recognize which numbers will be produced by a range expression

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

3

For Loops

4

For Loops Implement Repeated Actions

We've learned how to use while loops and loop control variables to iterate
until a certain condition is met. When that loop control is straightforward
(increase/decrease a number until it reaches a certain limit), we can use a
more standardized structure instead.

A for loop over a range tells the program exactly how many times to repeat
an action. The loop control variable is updated by the loop itself!

for <loopVariable> in range(<maxNumPlusOne>):

 <loopBody>

5

Example: Print 1 to 10

Previously we showed how to print the numbers from 1 to 10 with a while
loop. Doing this with a for loop is super easy! The loop control variable
starts at 0 and automatically increases by 1 each loop iteration.

for i in range(10):

 print(i+1) # starts at 0 and ends at 9, so add 1

6

While Loops vs. For Loops

To sum the numbers from 0 to n in a
while loop, we'd write the following:

n = 10

result = 0

i = 0

while i <= n:

 result = result + i

 i = i + 1

print(result)

In a for loop using a range expression, we'd
write the following:

n = 10

result = 0

for i in range(n + 1):

 result = result + i

print(result)

We have to use n + 1 because range goes up
to but not including the given number. It's like
writing

while i < n + 1:

7

Range

8

range Manages the Loop Control Variable

When we run for i in range(10), range(10) generates the consecutive
values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for the loop control variable, one value for each
iteration.

Because range generates numbers this way, you can't update the loop control
variable in the loop body.

If you try to change the loop control variable, it will revert back to the next expected
value on the following iteration.

for i in range(10):

 print(i)

 i = i + 2 # should skip two ahead, but does not

9

For Loop Flow Chart

Unlike while loops, we don't
initialize or update the loop
control variable. range covers
that part instead.

n = 10

result = 0

for i in range(n + 1):

 result = result + i

print(result)

result = result + i

No more
values

result = 0

print(result)

loop body

n = 10

create
values in
0,1,2 …
8,9,10i = next

value

10

range Arguments: start, end, step

range can be used with up to three arguments:
start, end, and step. As we've seen before, if you use
only one argument, it's the end.

When range is given two arguments, the first is the
start and the second is the end. Now the loop begins
at the start instead of 0. The second loop will print 3,
4, 5, 6, 7

If we use three arguments, the last argument is the
step of the range (how much the loop control
variable should change in each iteration). The third
loop prints the odd numbers from 1 to 11, because it
updates i by 2 each iteration instead of 1.

12

for i in range(10):

 print(i)

for i in range(3, 8):

 print(i)

for i in range(1, 12, 2):
 print(i)

end

end

end,

start,

start, step

While Loops Work Too

for i in range(1, 12, 2):
 print(i)

Any looping over numbers we can do in a for loop can also be done in a
while loop. In a while loop, the above code could be written as:

i = 1
while i < 12:
 print(i)
 i = i + 2

13

range Example: Countdown

Let's write a program that counts backwards from 10 to 1, using
range.

for i in range(10, 0, -1):

 print(i)

Note that i has to end at 0 in order to make 1 the last number that is
printed.

14

Activity: Predict the Printed Values

Each slide will show a loop with a different range. Predict what each
loop will print.

Raise a number of fingers for the answer you think is right! A=1, B=2,
C=3, D=4.

15

Q1

for i in range(3):

 print(i)

A: 1, 2, 3

B: 0, 1, 2

C: 0, 1, 2, 3

D: 3

16

Q2

for i in range(1, 5):

 print(i)

A: 1, 2, 3, 4

B: 0, 1, 2, 3, 4

C: 1, 2, 3, 4, 5

D: 2, 3, 4, 5

17

Q3

for i in range(5, 1):

 print(i)

A: 5, 4, 3, 2

B: 1, 2, 3, 4

C: Nothing is printed

D: 4, 3, 2, 1

18

Q4

for i in range(2, 8, 2):

 print(i)

A: 2, 4, 6, 8, 6, 4

B: 2, 4, 6

C: 2, 3, 4, 5, 6, 7

D: 2, 4, 6, 8

19

Q5

for i in range(5, 0, -1):

 print(i)

A: 5, 4, 3, 2, 1, 0

B: Nothing is printed

C: 0, 1, 2, 3, 4

D: 5, 4, 3, 2, 1

20

Coding with For Loops

21

Problem Solving with For Loops

Problem solving with for loops is similar to problem solving with while loops. You
need to identify the loop control variable, then find the correct start, end, and
step for it.

Example: how would you create a program that produces the pattern

"10-11-12-13-" using a for loop?

s = ""

for i in range(10, 14):

 s = s + str(i) + "-"

print(s)

22

Nesting with For Loops

We can also nest for loops in functions
and conditionals in for loops, just like
with while loops.

For example, we can determine
whether or not a number is prime using
a for loop over all the number's possible
factors (from 2 up to but not including
the number itself).

Make sure to also check that the
number is positive and not 1!

def isPrime(num):

 if num < 2:

 return False

 for factor in range(2, num):

 if num % factor == 0:

 return False

 return True

23

Nested Loops

24

Nesting Loops

Importantly, we can also nest loops inside of loops!

We mostly do this with for loops, and mostly when we want to loop over multiple
dimensions.

for <loopVar1> in range(<endNum1>):

 for <loopVar2> in range(<endNum2>):

 <bothLoopsBody>

 <justOuterLoopBody>

In nested loops, the inner loop is repeated every time the outer loop takes a step.

25

Example: Multiplication Table

Suppose we want to print a multiplication table from 1x1 to 3x2.

for x in range(1, 4):

 for y in range(1, 3):

 print(x, "*", y, "=", x * y)

Note that the inner loop belongs to the body of the outer loop. Every
iteration of y happens anew in each iteration of x.

26

Tracing Nested Loops

We can use code tracing to find the values at
each iteration of the loops.

for x in range(1, 4):

 for y in range(1, 3):

 print(x, "*", y, "=", x * y)

Iteration x y x*y

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 4

5 3 1 3

6 3 2 6

27

Example: drawGrid(canvas, gridSize)

Let's write a function that draws a
grid using Tkinter.

If we call drawGrid(canvas, 4),
we create a 4x4 grid.

Instead of repeating calls of
create_rectangle, we'll use
nested for loops (along with math
and logic) to determine where to
draw each square.

28

Sidebar: Function Call Canvas

Let's use a bit of code to generate a
new canvas in a function call.

We just need to add in our own call
to our drawing function in the
middle!

def drawGrid(canvas, gridSize):
 pass # add code here

import tkinter

def runDrawGrid():

 root = tkinter.Tk()

 canvas = tkinter.Canvas(root, width=400,

 height=400)

 canvas.configure(bd=0,

 highlightthickness=0)

 canvas.pack()

 drawGrid(canvas, 4) # your call here!

 root.mainloop()

29

First, Draw a Row

Let's start simple by drawing a row of cells
instead of a whole grid. Note that a row
repeats cells over the X axis. Each square
will be 50 x 50 pixels in size.

Each square's top and bottom will be 0 and
50. The first square's left and right are 0
and 50, second are 50 and 100, etc.

We'll want to loop over all possible
columns from 0 to gridSize-1. We'll
then draw a square for each.

Discuss: How can we calculate a square's
left and right positions abstractly using
only its column number?

Desired outcome:

sq 0 sq 1 sq 2 sq 3

y=0

y=50

x=0 x=50 x=100 x=150 x=200

30

Loop Over Columns

The first square starts at x coordinate 0;
the next is one square over, so it starts
at 50. The third square has two squares
before it, so it starts at 2 * 50; etc..

If we number the squares from 0 to 3,
each square's left side starts at
col * 50, where 50 is the size of the
square. Add 50 to that coordinate to get
the right side.

def drawGrid(canvas, gridSize):
 for col in range(gridSize):
 leftSq = col * 50
 rightSq = leftSq + 50
 canvas.create_rectangle(leftSq, 0,
 rightSq, 50)

31

Draw Multiple Rows for a Grid

Now we just need to repeat the logic
that drew the first row. Take the
code from before and put it inside an
outer loop. Note that the outer loop
represents a cell's row, while the
inner loop represents a cell's
column.

Calculate the top of each cell based
on the value's row, using the same
logic that found the column
coordinates.

def drawGrid(canvas, gridSize):

 for row in range(gridSize):

 topSq = row * 50

 bottomSq = topSq + 50

 for col in range(gridSize):

 leftSq = col * 50

 rightSq = leftSq + 50

 canvas.create_rectangle(leftSq,

 topSq,

 rightSq,

 bottomSq)

32

Add Stripes with Conditionals

We can make the grid more
exciting by adding colors to the
cells, to draw stripes.

Stripes alternate by row or by
column. Check whether the
row/column is odd or even using
the mod operator.

if row % 2 == 0:

 color = "red"

else:

 color = "green"

canvas.create_rectangle(leftSq, topSq,

 rightSq, bottomSq,

 fill=color)

33

Learning Goals

• Use for loops when reading and writing algorithms to repeat actions a
specified number of times

• Recognize which numbers will be produced by a range expression

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

35

	Slide 1: For Loops
	Slide 2: Announcements
	Slide 3: Learning Goals
	Slide 4: For Loops
	Slide 5: For Loops Implement Repeated Actions
	Slide 6: Example: Print 1 to 10
	Slide 7: While Loops vs. For Loops
	Slide 8: Range
	Slide 9: range Manages the Loop Control Variable
	Slide 10: For Loop Flow Chart
	Slide 12: range Arguments: start, end, step
	Slide 13: While Loops Work Too
	Slide 14: range Example: Countdown
	Slide 15: Activity: Predict the Printed Values
	Slide 16: Q1
	Slide 17: Q2
	Slide 18: Q3
	Slide 19: Q4
	Slide 20: Q5
	Slide 21: Coding with For Loops
	Slide 22: Problem Solving with For Loops
	Slide 23: Nesting with For Loops
	Slide 24: Nested Loops
	Slide 25: Nesting Loops
	Slide 26: Example: Multiplication Table
	Slide 27: Tracing Nested Loops
	Slide 28: Example: drawGrid(canvas, gridSize)
	Slide 29: Sidebar: Function Call Canvas
	Slide 30: First, Draw a Row
	Slide 31: Loop Over Columns
	Slide 32: Draw Multiple Rows for a Grid
	Slide 33: Add Stripes with Conditionals
	Slide 35: Learning Goals

