Circuits and Gates

15-110 — Wednesday 01/28



Do not start writing until we tell you to begin.



* Translate Boolean expressions to truth tables and circuits

* Translate circuits to truth tables and Boolean expressions

e Recognhize how addition is done at the circuit level using algorithms
and abstraction



Computers Run on Hardware

Software: the abstracted concepts of

computation- how computers represent

Ej:lata, and how programs can manipulate
ata.

Hardware: the actual physical
components used to implement software,
Ii.k%the laptop components shown to the
rignt.

All the operations we perform on a
computer correspond to physical actions
within the hardware of the machine. How
does this work?




We previously discussed how
everything in a computer is
represented using bits (0Os and 15s).

In hardware, bits are represented as

electrical voltage. A high level of
voltage is considered a 1; a low level

of voltage is considered a O.

Voltage

By redirecting electrical flow
throughout a system, we can change
the values of data in hardware.

5V

oV

Time



Circuits Manipulate Voltage

The computer uses circuits to perform
computational actions. Circuits redirect
electricity to different parts of hardware.
Physical components of circuits (like s \ /‘-'f'-;;gf;? Qs
transistors and capacitors) are out of the ) | el rgfme RS L1, Wigesial| o2
scope of this class. If you're interested, ) Lo s S e

tzlake ?n Intro to Electrical Engineering

class!

Instead, we will discuss how to use l o ouTRUT
gates, which are abstracted circuit H
components. Every gate we discuss can _ 00k
be directly translated to a real hardware s
. I ;Ik F.1 )
circuit. T .




Logical Gates



Recall that Booleans have two values (True and False), just like bits
(1/high voltage and 0/low voltage).

We can build a gate to have the same effect as a Boolean operation,
but with bits as input/output instead of True/False values.

Let's start with three familiar gates: and, or, and not.



Our three basic gates can be represented in actual hardware

An and gate takes two inputs and Ve - Vee
outputs 1 only if both inputs were 1
F 4| F
An or gate takes two inputs and T a_{
outputs 1 if either input was 1 h— b 2 _{
. NMOS NMOS NMOS
A not gate takes one input and AND gate OR gate NOT gate

outputs the reverse (1 becomes 0, O
becomes 1)



We'll use a shorthand when building circuits with these gates

An and gate takes two inputs and
outputs 1 if both inputs were 1

An or gate takes two inputs and
outputs 1 if either input was 1

A not gate takes one input and
outputs the reverse (1 becomes 0,
0 becomes 1)

A
B AAB

A -A

mi)
Ay D—ave
>~

o O - B

o O = B

o =, O B

o »r O B

o O O B

O B B



- lOg‘iC.].Y File Edit View Tools Simulate

When working with gates, it can R rAekal CARE R
help to simulate a circuit using the e

gates to investigate how they work. 9 ¥ M

8

S

There are lots of free online circuit &7 &2 § ®>Dﬂ\? oo

simulators. We'll use this one: oo EDe ©

https://logic.ly/demo i A [ % (ot Gat
oo s Pae ©

11


https://logic.ly/demo

Algorithms with Gates



Just like with Boolean expressions, we can combine gates together in
different orders to achieve different results. This lets us build
algorithms using gates.

When we want to represent an algorithm that uses gates, we can use
one of three different representation formats: a Boolean expression, a
circuit, or a truth table.



Truth Tables Show All Possibilities

So far, we've used truth tables to show all the
outcomes of a single gate or operation.

We can also use these tables to show all the
possible inputs and outputs of expressions.

For example, the truth table to the right shows
all possibilities for the following expression:

XV-Y

As a Boolean expression, this would be:
X or (not Y)

o O - BB

<

o L, O BB

-Y

, O +—» O

XV-Y

_) O K

14




Truth Table Clarity Complex Expressions

Truth tables are especially useful when you need to determine the output of a fairly
complex expression, like the rightmost column here. You can break down the
expression into smaller parts and give each part its own column.

Wlolc| ars | Anc | reviaro
1

1 1

©O O O O Fr Fk Bk K
©O O B B O O B
©O »r O »r O +» O
o o o o »~ =~ O o
o O O O O —~ O -
o O o ©O -~ =~ O

15



Boolean Expressions, Circuits, and Truth Tables can all be used to
represent the same algorithm. Why do we use all three?

* Boolean Expressions are good for quickly representing an algorithm in
text

* Circuits are a more visual option, and more interactive

* Truth Tables lay out all inputs and outputs, which helps derive
algorithms



We can use a truth table to derive a
Boolean expression from a set of inputs
and outputs; for example, the truth table
shown on the right matches the
expression below it. This requires deep
problem solving, so it is too complex to
cover in this class.

Once we have the Boolean expression,
we can use it to create a corresponding
circuit. Combine the appropriate gates in
the order specified by the parentheses.

The three representations shown to the
right all express the exact same logical
combination!

o O O O +r B P, .

1 1
1 0
0 1
0 0
1 1
1 0
0 1
0 0
BA(AVC)

O O O B O O Fr .



Likewise, given a circuit, we can construct its truth table
or the equivalent Boolean expression.

Given the circuit shown below, we can construct a truth
table either by logically determining the result, or by
simulating all possible input combinations. We can also
find the equivalent Boolean expression by translating
gates to Boolean operators.

n@%jjm

B o

o O O O r B =k .

1 1
1 0)
0) 1
0) 0)
1 1
1 0)
0) 1
0 0)
~A A (BVC)

o - = =, O O O o



>

combinations

Try all possible input

i

O «+H o
- O O
o o o
)
c
= @)
3 o
mg V
)
v — (aa)]
MIm S
m.a <
e <
n )
oD

D
D

D




Convert the following circuit to the ) m —>>-

equivalent Boolean Expression, and or not
then write the equivalent truth
table.

Which input combinations will B
result in the circuit outputting 1
(the light bulb lighting up)?




Let's add a few more gates to simplify our circuits.

A nand gate is - (A A B)

A nor gate is - (A V B)

An xor gate is 1 if exactly one of A
and B are 1 (and the other is 0). It is
the same as (A A -B) V (-A A B).

O O Kk = o O r

o O -k B

O r O K O r O

o L O -

~ O O O = = = O

oS +» =, O



Abstraction with Gates



Now that we know the basics of interacting with gates and circuits,
we can start building circuits that do real things.

We'll focus on a basic action that computers do all the time:
integer addition.



Let's say that we want to build a
circuit that takes two numbers
(represented in binary), adds them
together, and outputs the result. How
do we do this?

First, simplify. Let's solve a
subproblem. How do we add two one-
bit numbers, X and Y? What are all the
possible inputs and outputs?

Note that 1 + 1 = 10 because we're
working in binary

o O -k BB

S r O B

10
01
01
00



Because we need two digits to hold the
result, we need two result values: Sum
(the 1s digit) and Carry (the 2s digit).

1+1=10
Carry med tem Sum

How can we compute Sum and Carry
logically? Examine the truth table: Sum is
just an Xor function, and Carry is just an
And function!

We can make a circuit to do one-bit
addition, as is shown on the right. This is
called a Half-Adder.

© O =k Bk

© L O Bk

10
01
01
00

o O O B

© »r = O
o O O B

D

S —» = O



Now expand the circuit to handle
numbers with multiple bits (e.g. 4-bit
numbers). What needs to change?

When adding two numbers, we might
need to carry an output over to the
next column of the addition.

For the two's column on the right, call

the carried-in bit C,, and next carry C_,.

We need to modify our half-adder to
have a third input C._ and update the

In

computations for Carry (C, ) and Sum.

<_

carried bits



Addition with Gates — Full Adder

Start with the needed values for C_ , and Sum. With a little problem solving and
logic that are beyond the requirements of this course, we can determine that:

* C,, isequivalentto (XVY)AC, )V (XAY)
* Sumistheresultof X Y) D C,

n Cou= (XVY)AC)V(XAY) |Sum= (XDY)DC,
1 1

1

O O O O Fkr kB kB .
©c O b B O O B
S rr O r O +» O
o O O B O kB B
S r B O B O O Bk

27



Finally, to add two four-bit numbers
together, we can just chain
together the Full Adder we've
created four times.

Instead of inputting C,,, we pass in
the C_ , from the prior computation
(and pass in O for the 1s digit). This
process repeats the concept of the
Full Adder multiple times in order
to make a more complex circuit.

The result is really confusing to look
at...

28



To make this easier to understand, use
abstraction to replace each Full Adder
with a box. That box holds the Full
Adder circuit within it, but it doesn't
need to bother with all the internal

components.
Now we can do proper addition! B
Let's try it out. What's 9 + 3?

* 9is 8+1=1001, 3 is 2+1=0011

C_out
Sum

C in O

* Walk through the full adders... C
* The output is 1100=8+4
0w

e That's 12! It works!

@)




Sidebar: see a 4-bit Adder in Hardware

You can use the abstract circuit we've
designed to build an actual hardware
circuit that does 4-bit addition (or
morel).

See a demo of what that looks like
here:
https://youtu.be/wvJc9CZcvBc?t=742

30


https://youtu.be/wvJc9CZcvBc?t=742

* Translate Boolean expressions to truth tables and circuits

* Translate circuits to truth tables and Boolean expressions

e Recognhize how addition is done at the circuit level using algorithms
and abstraction



	Slide 1: Circuits and Gates
	Slide 2: Quizlet1
	Slide 3: Learning Goals
	Slide 4: Computers Run on Hardware
	Slide 5: Bits are Electric Voltage
	Slide 6: Circuits Manipulate Voltage
	Slide 7: Logical Gates
	Slide 8: Gates are Hardware's Boolean Operations
	Slide 9: Basic Gates – Actual Hardware
	Slide 10: Basic Gates – Shorthand
	Slide 11: Circuit Simulation
	Slide 12: Algorithms with Gates
	Slide 13: Multiple Representations of Gate Algorithms
	Slide 14: Truth Tables Show All Possibilities
	Slide 15: Truth Table Clarify Complex Expressions
	Slide 16: Three Representations
	Slide 17: Truth Table to Boolean Expression to Circuit
	Slide 18: Circuit to Boolean Expression to Truth Table
	Slide 19: Conversion Chart
	Slide 20: Activity: Find the positive inputs!
	Slide 21: A Few More Gates
	Slide 22: Abstraction with Gates
	Slide 23: Writing Real Algorithms with Circuits
	Slide 24: Addition with Gates
	Slide 25: Addition with Gates – Half-Adder
	Slide 26: Addition with Gates Over Multiple Digits
	Slide 27: Addition with Gates – Full Adder
	Slide 28: Addition with Gates – N-bit Adder
	Slide 29: Addition with Gates – N-bit Adder
	Slide 30: Sidebar: see a 4-bit Adder in Hardware
	Slide 31: Learning Goals

