Data Representation

15-110 - Monday $1 / 22$

Announcements

- Check1 was due at noon today. If you forgot to turn it in, you can still submit up until the revision deadline!
- We'll try to get feedback released by the next lecture
- Going forward, most assignments will be due on Mondays
- Note that Hw1 (due next Monday!) has a programming component. This will be completed in a separate Python file.
- Tutorial: how to use and submit the programming starter file

Learning Objectives

- Understand how different number systems can represent the same information
- Translate binary numbers to decimal, and vice versa
- Interpret binary numbers as abstracted types, including colors and text

Number Systems

Computers Run on Os and 1s

Computers represent everything by using 0 s and 1 s . You've likely seen references to this before.

How can we represent text, or images, or sound with 0 s and 1 s ? This brings us back to abstraction.

Abstraction is About Representation

Recall our definition of abstraction from the first lecture:

Abstraction is a technique used to make complex systems manageable by changing the amount of detail used to represent or interact with the system.

We'll use abstraction to translate $0 s$ and $1 s$ to decimal numbers, then translate those numbers to other types.

Number Systems - Coins

A number system is a way of representing numbers using symbols.

One example of a number system is currency. In the US currency system, how much is each of the following symbols worth?

Penny
1 cent
Nickel
5 cents
Dime
10 cents

Quarter 25 cents

Number Systems - Dollars

Alternatively, we can represent money using dollars and cents, in decimal form.

For example, a medium coffee at La Prima Cafe is $\mathbf{\$ 2 . 4 5}$.

Converting Coins to Dollars

We can convert between number systems by translating a value from one system to the other.

For example, the coins on the left represent the same value as $\$ 0.87$

Using pictures is clunky. Let's make a new representation system for coins.

Coin Number Representation

To represent coins, we'll make a number with four digits.

The first represents quarters, the second dimes, the third nickels, and the fourth pennies.

c.3.1.0.2 =

3*\$0.25 + 1*\$0.10 + 0*\$0.05 + 2*\$0.01 =

Q D N P

c 3102

\$0.87

Converting Dollars to Coins

Think about an algorithm to convert from a dollar amount to coins, using as few coins as possible.

You do: How would you begin such an algorithm?

Conversion Example

What is $\$ 0.59$ in coin representation?
$\$ 0.59=2 * \$ 0.25+0 * \$ 0.10+1 * \$ 0.05+4 * \$ 0.01=c .2 \cdot 0.1 .4$

Activity: Coin Conversion

You do: Now try the following calculations:

What is c.1.1.1.2 in dollars?

What is $\$ 0.61$ in coin representation?

Number Systems - Decimal

When we work with ordinary numbers outside of any specific context, we usually use the decimal number system, which uses digits $0,1,2,3,4,5,6,7,8$, and 9 .

Moving from the right, the first digit is the number of 1 s , the second is 10 s , the third is 100 s , etc. Each digit represents a power of 10. For example, 1980 in decimal is 1 * $1000+9 * 100+8 * 10+0 * 1$

But this isn't the only abstract number system we can use!

Number Systems - Binary

We can represent numbers using only the digits $0 s$ and $1 s$ with the binary number system.

Instead of counting the number of $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, and 25 s in coins, or $1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}$, and 1000s in abstract amounts, count the number of $1 \mathrm{~s}, 2 \mathrm{~s}, 4 \mathrm{~s}, 8 \mathrm{~s}$, etc. For example, 1101 in binary is $1 * 8+1 * 4+0 * 2+1 * 1=13$ in decimal.

Why these numbers? They're powers of 2. This is a number in base $\mathbf{2}$, which only needs the digits 0 and 1 .

$$
\begin{array}{rrrr}
{ }^{23} \boldsymbol{8} & { }^{2} \mathbf{4} & { }^{2}{ }^{2} & { }^{20} \mathbf{1} \\
1 & 1 & 0 & 1
\end{array}
$$

Bits and Bytes

When working with binary and computers, we often refer to a set of binary values used together to represent a number.

A single binary value is called a bit.

A set of 8 bits is called a byte.

We commonly use some number of bytes to represent data values.

Counting in Binary

$$
\begin{aligned}
& \mathbf{O}=\begin{array}{c|c|c|c|c|c|c|c|}
2^{2} \mathbf{1 2 8} \\
{ }^{26} \mathbf{6 4} & { }^{25} \mathbf{3 2} & 2^{4} \mathbf{1 6} & { }^{2^{3}} \mathbf{8} & 2^{2} \mathbf{4} & { }^{2^{1}} \mathbf{2} & { }^{20} \mathbf{1} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \mathbf{2}=\begin{array}{c|c|c|c|c|c|c|c|}
2^{1} \mathbf{1 2 8} \\
{ }^{2^{6}} \mathbf{6 4} & 2^{5} \mathbf{3 2} & 2^{4} \mathbf{1 6} & { }^{2^{3}} \mathbf{8} & 2^{2} \mathbf{4} & 2^{1} \mathbf{2} & { }^{20} \mathbf{1} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array} \\
& \mathbf{4}=\begin{array}{c|c|c|c|c|c|c|c|}
\hline 2^{2} \mathbf{1 2 8} & { }^{26} \mathbf{6 4} & { }^{2^{5}} \mathbf{3 2} & 2^{2^{4} \mathbf{1 6}} & { }^{23} \mathbf{8} & { }^{2 \boldsymbol{4}} \mathbf{4} & { }^{21} \mathbf{2} & { }^{20} \mathbf{1} \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array} \\
& \mathbf{6}=\begin{array}{c|c|c|c|c|c|c|c|}
\hline{ }^{2} \mathbf{1 2 8} & 2^{2^{6}} \mathbf{6 4} & { }^{2^{5}} \mathbf{3 2} & { }^{24} \mathbf{1 6} & { }^{2^{3}} \mathbf{8} & { }^{2} \mathbf{4} & { }^{21} \mathbf{2} & { }^{20} \mathbf{1} \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Converting Binary to Decimal

To convert a binary number to decimal, just add each power of 2 that is represented by a 1.

Another example: $10010001=128+16+1=145$

Converting Decimal to Binary

Converting decimal to binary uses the same process as converting dollars to coins.

Look for the largest power of 2 that can fit in the number and subtract it from the number. Repeat with the next power of 2 , etc., until you reach 0 .

For example, $36=32+4$-> 00100100

128	${ }^{26} 64$	$2^{5} 32$	${ }^{24} 16$	${ }^{23} 8$		2^{1}	2_{1}^{20}
0	0	1	0	0	1	0	

Another example:

$103=64+39$											2	
+ $32+4+3=64+32+4+2+1$->					-							

Activity: Converting Binary

You do: Now try converting numbers on your own.

First: what is 01011011 in decimal?

Second: what is 75 in binary?

Abstracted Types

Binary and Abstraction

Now that we can represent numbers using binary, we can represent everything computers store using binary.

We just need to use abstraction to interpret bits or numbers in particular ways.

Let's consider dates, images, and text.

Discussion: Representing Dates

It can be helpful to think logically about how to represent a value before learning how it's done in practice. Let's do that now.

Discuss: We can convert binary directly into numbers, but how could we use binary and number to represent a date (i.e., 10/15/2023)?

Answer: Representing Dates

Simple Approach: reserve 4 bits to represent the month (1-12), 5 bits to represent the date (1-31) and 12 bits to represent the year (1-4095). Convert the month, day, year normally from decimal to binary.

Actual Approach: in the commonly used Unix Timestamp approach, you count the seconds from a certain date (00:00:00 of 01/01/1970) and convert the number of seconds to binary. Any dates that occur before this time would be negative numbers, and any dates after would be positive numbers!

We use 32 bits to represent each date; the first bit is used to indicate if the number was positive (0) or negative (1), and the remaining 31 bits are used to represent the number of seconds elapsed. Thus, we restrict the number of bits to represent the date to 31 bits.

Represent Images as Grids of Colors

What if we want to represent an image? How can we convert that to numbers?

First, break the image down into a grid of colors, where each square of color has a distinct hue. A square of color in this context is called a pixel.

If we can represent a pixel in binary, we can interpret a series of pixels as an image.

Representing Colors in Binary

We need to represent a single color (a pixel) as a number.
There are a few ways to do this, but we'll focus on RGB. Any color can be represented as a combination of Red, Green, and Blue.

Red, green, and blue intensity can be represented using one byte each, where 00000000 (0) is none and 11111111 (255) is very intense. Each pixel will therefore require 3 bytes to encode.

Try it out here:
https://www.w3schools.com/colors/colors rgb.asp

Example: Representing Beige

To make the campus-building beige, we'd need:
Red $=\mathbf{2 4 9} \mathbf{= 1 1 1 1 1 0 0 1}$

Green $=228 \mathbf{= 1 1 1 0 0 1 0 0}$
Blue = 183 = 10110111

Which makes beige!

Represent Text as Individual Characters

Finally, how do we represent text?

First, we break it down into smaller parts, like with images. In this case, we can break text down into individual characters.

For example, the text "Hello World" becomes
H, e, I, I, o, space, W, o, r, I, d

Use a Lookup Table to Convert Characters

Unlike colors, characters don't have a natural connection to numbers.

Instead, we can use a lookup table that maps each possible character to an integer.

As long as every computer uses the same lookup table, computers can always translate a set of numbers into the same set of characters.

ASCII is a Simple Lookup Table

	Dec	Oct	Dec Hex	Oc HTML	Chr	Dec	Oct	Chr	Dec Hex	Oct	Chr	
	00	000 NULL	3220	040 \&\#032;	Space	6440	100 \&\#064;	@	9660	140 \&\#096;		
Smal set of characters	11	001 Start of Header	3321	041 \&\#033;	!	6541	101 \&\#065;	A	9761	141 \&\#097;	a	
SMAdisetof characters,	22	002 Start of Text	3422	042 \&\#034;	"	6642	102 \&\#066;	B	9862	142 \&\#098;	b	
	33	003 End of Text	3523	043 \&\#035;	\#	6743	103 \&\#067;	C	9963	143 \&\#099;	c	
We can use the encoalne	44	004 End of Transmission	3624	044 \&\#036;	\$	6844	104 \&\#068;	D	10064	144 \&\#100;	d	
	55	005 Enquiry	3725	045 \&\#037;	\%	6945	105 \&\#069;	E	10165	145 \&\#101;	e	
SVStem called ASC\\|. This	66 7 7	006 Acknowledgment	3826	046 \&\#038;	\&	7046	106 \&\#070;	F	10266	146 \&\#102;	f	
	77	007 Bell	3927	047 \&\#039;		7147	107 \&\#071;	G	10367	147 \&\#103;	g	
	88	010 Backspace	4028	050 \& \#040;	(7248	110 \&\#072;	H	10468	150 \&\#104;	h	
mapsthenumbers oto 25	99	011 Horizontal Tab	4129	051 \&\#041;)	7349	111 \&\#073;	I	10569	151 \&\#105;	i	
	10 A	012 Line feed	42 2A	052 \&\#042;		74 4A	112 \&\#074;	J	106 6A	152 \&\#106;	j	
	11 B	013 Vertical Tab	43 2B	053 \&\#043;	+	75 4B	113 \&\#075;	K	107 6B	153 \&\#107;	k	
Characters. nerefore, one	12 C	014 Form feed	44 2C	054 \&\#044;		76 4C	114 \&\#076;	L	108 6C	154 \&\#108;	1	
	13 D	015 Carriage return	45 2D	055 \&\#045;	-	77 4D	115 \&\#077;	M	109 6D	155 \&\#109;	m	
cter is represented by	14 E	016 Shift Out	46 2E	056 \&\#046;		78 4E	116 \&\#078;	N	110 6E	156 \&\#110;	n	
inaracer is represented by	15 F	017 Shift In	47 2F	057 \&\#047;	/	79 4F	117 \&\#079;	O	111 6F	157 \&\#111;	-	
	1610	020 Data Link Escape	4830	060 \&\#048;	0	8050	120 \&\#080;	P	11270	160 \&\#112;	p	
ne ovte	1711	021 Device Control 1	4931	061 \&\#049;	1	8151	121 \&\#081;	Q	11371	161 \&\#113;	q	
	1812	022 Device Control 2	5032	062 \&\#050;	2	8252	122 \&\#082;	R	11472	162 \&\#114;	r	
	1913	023 Device Control 3	5133	063 \&\#051;	3	8353	123 \&\#083;	S	11573	163 \&\#115;	s	
	2014	024 Device Control 4	5234	064 \&\#052;	4	8454	124 \&\#084;	T	11674	164 \&\#116;	t	
	2115	025 Negative Ack.	5335	065 \&\#053;	5	8555	125 \&\#085;	U	11775	165 \&\#117;	u	
	2216	026 Synchronous idle	5436	066 \&\#054;	6	8656	126 \&\#086;	V	11876	166 \&\#118;	v	
	2317	027 End of Trans. Block	5537	067 \&\#055;	7	8757	127 \&\#087;	W	11977	167 \&\#119;	w	
neck It out nere:	2418	030 Cancel	5638	070 \&\#056;	8	8858	130 \&\#088;	X	12078	170 \&\#120;	x	
	2519	031 End of Medium	5739	071 \&\#057;	9	8959	131 \&\#089;	Y	12179	171 \&\#121;	y	
ttos:/ / WWW.asciitable.con/	26 1A	032 Substitute	58 3A	072 \&\#058;	:	90 5A	132 \&\#090;	Z	122 7A	172 \&\#122;	z	
LuNS. WW.aSCilcanle.com	27 1B	033 Escape	59 3B	073 \&\#059;	;	91 5B	133 \&\#091;	[123 7B	173 \&\#123;	\{	
	281 C	034 File Separator	60 3C	074 \&\#060;	<	92 5C	134 \&\#092;	1	1247 C	174 \&\#124;	I	
	29 1D	035 Group Separator	61 3D	075 \&\#061;	=	93 5D	135 \&\#093;]	125 7D	175 \&\#125;	\}	
	301 E	036 Record Separator	623 E	076 \&\#062; 077 \&\#063;	?	945 E 95	136 \&\#094; 137 \&\#095;	\wedge	1267 E 127 FF	$\begin{aligned} & 176 \text { \&\#126; } \\ & 177 \text { \&\#127; } \end{aligned}$	Del	

Translating Text to Numbers

Y a y ->

8997121 ->

0101100101100001 01111001

Dec Hex	Oct Chr	Dec Hex	Oct HTML	Chr	Dec Hex	Oct	HTML	Chr	Dec Hex	Oct	HTML	Chr
00	000 NULL	3220	040 \&\#032;	Space	6440	100	\&\#064;	@	9660		\&\#096;	
11	001 Start of Header	3321	041 \&\#033;	!	6541		\&\#065;	A	9761		\&\#097;	a
22	002 Start of Text	3422	042 \&\#034;		6642		\&\#066;	B	9862		\&\#098;	b
33	003 End of Text	3523	043 \&\#035;	\#	6743	103	\&\#067;	C	9963		\&\#099;	C
44	004 End of Transmission	3624	044 \&\#036;	\$	6844	104	\&\#068;	D	10064		\&\#100;	d
55	005 Enquiry	3725	045 \&\#037;	\%	6945	105	\&\#069;	E	10165		\&\#101;	e
66	006 Acknowledgment	3826	046 \&\#038;	\&	7046	106	\&\#070;	F	10266		\&\#102;	f
77	007 Bell	3927	047 \&\#039;		7147	107	\&\#071;	G	10367		\&\#103;	g
88	010 Backspace	4028	050 \&\#040;	(7248	110	\&\#072;	H	10468		\&\#104;	h
99	011 Horizontal Tab	4129	051 \&\#041;)	7349	111	\&\#073;	I	10569		\&\#105;	i
10 A	012 Line feed	42 2A	052 \&\#042;	*	74 4A	112	\&\#074;	J	106 6A	152	\&\#106;	j
11 B	013 Vertical Tab	43 2B	053 \&\#043;	+	75 4B	113	\&\#075;	K	107 6B		\&\#107;	k
12 C	014 Form feed	44 2C	054 \&\#044;		76 4C	114	\&\#076;	L	108 6C		\&\#108;	1
13 D	015 Carriage return	45 2D	055 \&\#045;	-	77 4D	115	\&\#077;	M	109 6D		\&\#109;	m
14 E	016 Shift Out	46 2E	056 \&\#046;		78 4E	116	\&\#078;	N	110 6E		\&\#110;	n
15 F	017 Shift In	47 2F	057 \&\#047;	/	79 4F	117	\&\#079;	O	111 6F		\&\#111;	-
1610	020 Data Link Escape	4830	060 \&\#048;	0	8050	120	\&\#080;	P	11270		\&\#112;	P
1711	021 Device Control 1	4931	061 \&\#049;	1	8151	121	\&\#081;	Q	11371		\&\#113;	q
1812	022 Device Control 2	5032	062 \&\#050;	2	8252	122	\&\#082;	R	11472		\&\#114;	r
1913	023 Device Control 3	5133	063 \&\#051;	3	8353	123	\&\#083;	S	11573		\&\#115;	5
2014	024 Device Control 4	5234	064 \&\#052;	4	8454	124	\&\#084;	T	11674		\&\#116;	t
2115	025 Negative Ack.	5335	065 \&\#053;	5	8555	125	\&\#085;	U	11775		\&\#117;	u
2216	026 Synchronous idle	5436	066 \&\#054;	6	8656	126	\&\#086;	V	11876		\&\#118;	v
2317	027 End of Trans. Block	5537	067 \&\#055;	7	8757	127	\&\#087;	W	11977	167	\&\#119;	W
2418	030 Cancel	5638	070 \&\#056;	8	8858	130	\&\#088;	X	12078		\&\#120;	x
2519	031 End of Medium	5739	071 \&\#057;	9	8959	131	\&\#089;	Y	12179		\&\#121;	y
26 1A	032 Substitute	583 A	072 \&\#058;	:	905 A	132	\&\#090;	Z	122 7A		\&\#122;	z
27 1B	033 Escape	59 3B	073 \&\#059;	;	91 5B	133	\&\#091;	[123 7B		\&\#123;	1
28 1C	034 File Separator	603 C	074 \&\#060;	<	92 5C	134	\&\#092;	\}	124 7C		\&\#124;	
29 1D	035 Group Separator	61 3D	075 \&\#061;	$=$	93 5D	135	\&\#093;]	125 7D		\&\#125;	\}
301 E	036 Record Separator	62 3E	076 \&\#062;	>	94 5E	136	\&\#094;	\wedge	126 7E	176	\&\#126;	~
31 1F	037 Unit Separator	63 3F	077 \&\#063;	?	95 5F	137	\&\#095;	-	127 7F	177	\&\#127;	Del

For More Characters, Use Unicode

There are many characters that aren't available in ASCII (characters from nonEnglish languages, advanced symbols, emoji...) due to the limited size.

The Unicode system represents every character that can be typed into a computer. It uses up to 5 bytes, which can represent up to 1 trillion characters! Find all the Unicode characters here: www.unicode-table.com

The Unicode system is also actively under development. The Unicode Consortium regularly updates the standard to add new types of characters and emoji.

Discuss: what are the potential repercussions of using a single standard for all text on computers?

Learning Objectives

- Understand how different number systems can represent the same information
- Translate binary numbers to decimal, and vice versa
- Interpret binary numbers as abstracted types, including colors and text

Bonus Slides

In case you want to learn even more about data representation

Size of Integers

Your machine is either classified as 32 -bit or 64 -bit. This refers to the size of integers used by your computer's operating system.

The largest signed integer that can be represented with N bits is $2^{\mathrm{N}}-1$ (why?). This means that...

Largest int for 32 bits: 4,294,967,295 (or 2,147,483,647 with negative numbers)
Largest int for 64 bits: 18,446,744,073,709,551,615 (18.4 quintillion)

Integer Overflow

Why does this matter?
By late 2014, the music video Gangnam Style received more than 2 billion views. When it passed the largest positive number that could be represented with 32 bits, YouTube showed the number of views as negative instead!

Now YouTube uses a 64-bit counter instead.

Computer Memory is Stored as Binary

Your computer keeps track of saved data and all the information it needs to run in its memory, which is represented as binary. You can think about your computer's memory as a really long list of bits, where each bit can be set to 0 or 1 . But usually we think in terms of bytes, groups of 8 bits.

Every byte in your computer has an address, which the computer uses to look up its value.

49	53	49	49	48	75	101	108	198	121	77	97	114	103	97	114	101	116

\ldots

Binary Values Depend on Interpretation

When you open a file on your computer, the application goes to the appropriate address, reads the associated binary, and interprets the binary values based on the file encoding it expects. That interpretation depends on the application you use when opening the file, and the filetype.

You can attempt to open any file using any program, if you convince your computer to let you try. Some programs may crash, and others will show nonsense because the binary isn't being interpreted correctly.

Example: try changing a .docx filetype to .txt, then open it in a plain text editor. .docx files have extra encoding, whereas .txt files use plain ASCII.

We Use Lots of Bytes!

In modern computing, we use a lot of bytes to represent information.

Smartphone Memory: 64 gigabytes $=64$ billion bytes

Google databases: Over 100 million gigabytes $=100$ quadrillion bytes!

CMU Wifi: 15 million bytes per second

