
Data Representation
15-110 – Friday 01/16

Announcements

⚫ No office hours or lecture on Monday (MLK Day)

⚫ Check1 is due Tuesday at noon

2

Learning Objectives

• Understand how different number systems can represent the same
information

• Translate binary numbers to decimal, and vice versa

• Interpret binary numbers as abstracted types, including colors and
text

3

Number Systems

4

Computers Run on 0s and 1s

Computers represent everything by
using 0s and 1s. You've likely seen
references to this before.

How can we represent text, or
images, or sound with 0s and 1s?
This brings us back to abstraction.

5

Abstraction is About Representation

Recall our definition of abstraction from the first lecture:

Abstraction is a technique used to make complex systems
manageable by changing the amount of detail used to represent or
interact with the system.

We'll use abstraction to interpret 0s and 1s in a wide variety of ways.
We'll start by translating them into decimal numbers.

6

Number Systems – Coins

A number system is a way of
representing numbers using
symbols.

One example of a number system is
currency. In the US currency
system, how much is each of the
following symbols worth?

7

Penny
1 cent

Nickel
5 cents

Dime
10 cents

Quarter
25 cents

Number Systems – Dollars

Alternatively, we can represent money using dollars and cents, in
decimal form.

For example, a medium coffee at La Prima Cafe is $2.50.

8

Converting Coins to Dollars

We can convert between number
systems by translating a value from
one system to the other.

For example, the coins on the left
represent the same value as $0.87

Using pictures is clunky. Let's make
a new representation system for
coins.

9

Coin Number Representation

To represent coins, we'll make a number
with four digits.

The first represents quarters, the second
dimes, the third nickels, and the fourth
pennies.

c.3.1.0.2 =

3*$0.25 + 1*$0.10 + 0*$0.05 + 2*$0.01 =

$0.87

10

Q D N P

c 3 1 0 2

Converting Dollars to Coins

Think about an algorithm to convert from a dollar amount to coins,
using as few coins as possible.

You do: How would you begin such an algorithm?

11

Conversion Example

What is $0.59 in coin representation?

$0.59 = 2*$0.25 + 0*$0.10 + 1*$0.05 + 4*$0.01 = c.2.0.1.4

12

Activity: Coin Conversion

You do: Now try the following calculations:

What is c.1.1.1.2 in dollars?

What is $0.61 in coin representation?

13

Number Systems - Decimal

When we work with ordinary numbers outside of any specific context, we usually use
the decimal number system, which uses digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Moving from the right, the first digit is the number of 1s, the second is 10s, the third is
100s, etc. Each digit represents a power of 10. For example, 1980 in decimal is 1 *
1000 + 9 * 100 + 8 * 10 + 0 * 1

But this isn't the only abstract number system we can use!

14

1000 100 10 1

1 9 8 0

100101102103

Number Systems – Binary

We can represent numbers using only the digits 0 and 1 with the binary number
system.

Instead of counting the number of 1s, 5s, 10s, and 25s in coins, or 1s, 10s, 100s,
and 1000s in abstract amounts, count the number of 1s, 2s, 4s, 8s, etc. For
example, 1101 in binary is 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 13 in decimal.

Why these numbers? They're powers of 2. This is a number in base 2, which only
needs the digits 0 and 1.

15

8 4 2 1

1 1 0 1

20212223

Bits and Bytes

When working with binary and computers, we often refer to a set of
binary values used together to represent a number.

A single binary value is called a bit.

A set of 8 bits is called a byte.

We commonly use some number of bytes to represent data values.

16

Counting in Binary

17

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 0

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1

128 64 32 16 8 4 2 1

0 0 0 0 0 0 1 0

128 64 32 16 8 4 2 1

0 0 0 0 0 0 1 1

128 64 32 16 8 4 2 1

0 0 0 0 0 1 0 0

128 64 32 16 8 4 2 1

0 0 0 0 0 1 0 1

128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 0

128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 1

0 = 1 =

2 = 3 =

4 = 5 =

6 = 7 =

2021222324252627

2021222324252627

2021222324252627

2021222324252627

2021222324252627

2021222324252627

2021222324252627

2021222324252627

See more:

https://www.advanced-ict.info/javascript/binary_counter.html

https://www.advanced-ict.info/javascript/binary_counter.html
https://www.advanced-ict.info/javascript/binary_counter.html
https://www.advanced-ict.info/javascript/binary_counter.html

Converting Binary to Decimal

To convert a binary number to decimal, just add each power of 2 that
is represented by a 1.

For example, 00011000 = 16 + 8 = 24

Another example:

10010001 = 128 + 16 + 1 = 145

18

128 64 32 16 8 4 2 1

0 0 0 1 1 0 0 0

128 64 32 16 8 4 2 1

1 0 0 1 0 0 0 1

2021222324252627

2021222324252627

Converting Decimal to Binary

Converting decimal to binary uses the same process as converting dollars to
coins.

Look for the largest power of 2 that can fit in the number and subtract it from
the number. Repeat with the next power of 2, etc., until you reach 0.

For example, 36 = 32 + 4 -> 00100100

Another example:
103 = 64 + 39 = 64 + 32 + 7 =
64 + 32 + 4 + 3 = 64 + 32 + 4 + 2 + 1 ->
01100111

19

128 64 32 16 8 4 2 1

0 0 1 0 0 1 0 0

128 64 32 16 8 4 2 1

0 1 1 0 0 1 1 1

2021222324252627

2021222324252627

Activity: Converting Binary

You do: Now try converting numbers on your own.

First: what is 01011011 in decimal?

Second: what is 75 in binary?

20

Abstracted Types

21

Binary and Abstraction

Now that we can represent numbers using binary, we can represent
everything computers store using binary.

We just need to use abstraction to interpret bits or numbers in
particular ways.

Let's consider dates, images, and text.

22

Discussion: Representing Dates

It can be helpful to think logically about how to represent a value
before learning how it's done in practice. Let's do that now.

Discuss: We can convert binary directly into numbers, but how could
we use binary and number to represent a date (i.e., 01/17/2025)?

23

Representing Dates – Simple Approach

Use 4 bits to represent the month (1-12), 5 bits to represent the day (1-
31) and 12 bits to represent the year (1-4095). Convert the month, day,
year normally from decimal to binary.

24

0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1

Month
01

Day
17

Year
2025

Representing Dates – Actual Approach

In the commonly used Unix Timestamp approach, you count the seconds from a certain
date (00:00:00 of 01/01/1970) and convert the number of seconds to binary. Any dates
that occur before this time would be negative numbers, and any dates after would be
positive numbers!

We use 32 bits to represent each date; the first bit is used to indicate if the number was
positive (0) or negative (1), and the remaining 31 bits are used to represent the number of
seconds elapsed. Thus, we restrict the number of bits to represent the date to 31 bits.

25More on dates: https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/

0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0

1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0

01/17/2025 2pm -> 1737140400 seconds

https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/

Represent Images as Grids of Colors

What if we want to represent an image?
How can we convert that to numbers?

First, break the image down into a grid
of colors, where each square of color
has a distinct hue. A square of color in
this context is called a pixel.

If we can represent a pixel in binary, we
can interpret a series of pixels as an
image.

26

Representing Colors in Binary

We need to represent a single color (a pixel) as a number.

There are a few ways to do this, but we'll focus on RGB. Any
color can be represented as a combination of Red, Green,
and Blue.

Red, green, and blue intensity can be represented using one
byte each, where 00000000 (0) is none and 11111111 (255)
is very intense. Each pixel will therefore require 3 bytes to
encode.

Try it out here:
https://www.w3schools.com/colors/colors_rgb.asp

27

https://www.w3schools.com/colors/colors_rgb.asp

Example: Representing Beige

To make the campus-building beige, we'd need:

Red = 249 = 11111001

Green = 228 = 11100100

Blue = 183 = 10110111

Which makes beige!

28

Represent Text as Individual Characters

Finally, how do we represent text?

First, we break it down into smaller parts, like with images. In this
case, we can break text down into individual characters.

For example, the text "Hello World" becomes

29

H e l l o space W o r l d

Use a Lookup Table to Convert Characters

Unlike colors, characters don't have a natural connection to numbers.

Instead, we can use a lookup table that maps each possible character
to an integer.

As long as every computer uses the same lookup table, computers
can always translate a set of numbers into the same set of characters.

30

ASCII is a Simple Lookup Table

For a small set of characters,
we can use the encoding
system called ASCII. This
maps the numbers 0 to 255
to characters. Therefore, one
character is represented by
one byte.

Check it out here:
https://www.asciitable.com/

31

https://www.asciitable.com/

Translating Text to Numbers
"Yay" ->

 ->

89 97 121 ->

01011001 01100001
01111001

32

Y a y

For More Characters, Use Unicode

There are many characters that aren't available in ASCII (characters from non-
English languages, advanced symbols, emoji...) due to the limited size.

The Unicode system represents every character that can be typed into a
computer. It uses up to 5 bytes, which can represent up to 1 trillion
characters! Find all the Unicode characters here: www.unicode-table.com

The Unicode system is also actively under development. The Unicode
Consortium regularly updates the standard to add new types of characters
and emoji.

Discuss: what are the potential repercussions of using a single standard for all
text on computers?

33

http://www.unicode-table.com/
http://www.unicode-table.com/
http://www.unicode-table.com/

Learning Objectives

• Understand how different number systems can represent the same
information

• Translate binary numbers to decimal, and vice versa

• Interpret binary numbers as abstracted types, including colors and
text

34

Bonus Slides
In case you want to learn even more about data representation

35

Size of Integers

Your machine is either classified as 32-bit or 64-bit. This refers to the
size of integers used by your computer's operating system.

The largest signed integer that can be represented with N bits is 2N-1
(why?). This means that...

Largest int for 32 bits: 4,294,967,295 (or 2,147,483,647 with negative numbers)

Largest int for 64 bits: 18,446,744,073,709,551,615 (18.4 quintillion)

36

Integer Overflow

Why does this matter?

By late 2014, the music video
Gangnam Style received more than 2
billion views. When it passed the
largest positive number that could be
represented with 32 bits, YouTube
showed the number of views as
negative instead!

Now YouTube uses a 64-bit counter
instead.

37

Computer Memory is Stored as Binary

Your computer keeps track of saved data and all the information it
needs to run in its memory, which is represented as binary. You can
think about your computer's memory as a really long list of bits,
where each bit can be set to 0 or 1. But usually we think in terms of
bytes, groups of 8 bits.

Every byte in your computer has an address, which the computer
uses to look up its value.

38

49 53 49 49 48 75 101 108 198 121 77 97 114 103 97 114 101 116

1000... ...Addresses 1004 1008 1012 1016

Binary Values Depend on Interpretation

When you open a file on your computer, the application goes to the
appropriate address, reads the associated binary, and interprets the
binary values based on the file encoding it expects. That interpretation
depends on the application you use when opening the file, and the
filetype.

You can attempt to open any file using any program, if you convince
your computer to let you try. Some programs may crash, and others will
show nonsense because the binary isn't being interpreted correctly.

Example: try changing a .docx filetype to .txt, then open it in a plain text
editor. .docx files have extra encoding, whereas .txt files use plain ASCII.

39

We Use Lots of Bytes!

In modern computing, we use a lot of bytes to represent information.

Smartphone Memory: 64 gigabytes = 64 billion bytes

Google databases: Over 100 million gigabytes = 100 quadrillion bytes!

CMU Wifi: 15 million bytes per second

40

	Slide 1: Data Representation
	Slide 2: Announcements
	Slide 3: Learning Objectives
	Slide 4: Number Systems
	Slide 5: Computers Run on 0s and 1s
	Slide 6: Abstraction is About Representation
	Slide 7: Number Systems – Coins
	Slide 8: Number Systems – Dollars
	Slide 9: Converting Coins to Dollars
	Slide 10: Coin Number Representation
	Slide 11: Converting Dollars to Coins
	Slide 12: Conversion Example
	Slide 13: Activity: Coin Conversion
	Slide 14: Number Systems - Decimal
	Slide 15: Number Systems – Binary
	Slide 16: Bits and Bytes
	Slide 17: Counting in Binary
	Slide 18: Converting Binary to Decimal
	Slide 19: Converting Decimal to Binary
	Slide 20: Activity: Converting Binary
	Slide 21: Abstracted Types
	Slide 22: Binary and Abstraction
	Slide 23: Discussion: Representing Dates
	Slide 24: Representing Dates – Simple Approach
	Slide 25: Representing Dates – Actual Approach
	Slide 26: Represent Images as Grids of Colors
	Slide 27: Representing Colors in Binary
	Slide 28: Example: Representing Beige
	Slide 29: Represent Text as Individual Characters
	Slide 30: Use a Lookup Table to Convert Characters
	Slide 31: ASCII is a Simple Lookup Table
	Slide 32: Translating Text to Numbers
	Slide 33: For More Characters, Use Unicode
	Slide 34: Learning Objectives
	Slide 35: Bonus Slides
	Slide 36: Size of Integers
	Slide 37: Integer Overflow
	Slide 38: Computer Memory is Stored as Binary
	Slide 39: Binary Values Depend on Interpretation
	Slide 40: We Use Lots of Bytes!

