Data Representation

15-110 — Friday 01/16



« No office hours or lecture on Monday (MLK Day)

o Checkl is due Tuesday at noon



e Understand how different number systems can represent the same
information

* Translate binary numbers to decimal, and vice versa

* Interpret binary numbers as abstracted types, including colors and
text



Number Systems



Computers represent everything by
using Os and 1s. You've likely seen
references to this before.

How can we represent text, or
images, or sound with Os and 1s?
This brings us back to abstraction.

O, OO OFFFFEF MO, FOF,F OO OO

OO OOH O PP OFRLF O OO -

OFRROFR,RFFFRPROFPFRPOFROOFRLPOOFR,OF

0
0101
001O
110O
01 1y
011o
1001
01
101O
10 1y
0101
10 1]
100O
1’/ 0

1
0 1,
0
Oo
0 1
0 0
1 0
0




Recall our definition of abstraction from the first lecture:

Abstraction is a technique used to make complex systems
manageable by changing the amount of detail used to represent or

interact with the system.

We'll use abstraction to interpret Os and 1s in a wide variety of ways.
We'll start by translating them into decimal numbers.



A number system is a way of
representing numbers using
symbols.

One example of a number system is
currency. In the US currency
system, how much is each of the
following symbols worth?

Penny
1 cent

Nickel
5 cents

Dime
10 cents

Quarter
25 cents



Number Systems — Dollars

Alternatively, we can represent money using dollars and cents, in
decimal form.

For example, a medium coffee at La Prima Cafe is $2.50.




Converting Coins to Dollars

We can convert between number
systems by translating a value from
one system to the other.

For example, the coins on the left
represent the same value as $0.87

Using pictures is clunky. Let's make
a new representation system for
coins.




Coin Number Representation

To represent coins, we'll make a number
with four digits.

The first represents quarters, the second
dimes, the third nickels, and the fourth
pennies.

c.3.1.0.2 =
3*S50.25 + 1*S0.10 + 0*S0.05 + 2*50.01 =

50.87

10



Think about an algorithm to convert from a dollar amount to coins,
using as few coins as possible.

You do: How would you begin such an algorithm?



What is $0.59 in coin representation?

$0.59 = 2*50.25 + 0*$0.10 + 1*$0.05 + 4*$0.01 = c.2.0.1.4



You do: Now try the following calculations:

Whatis c.1.1.1.2 in dollars?

What is $0.61 in coin representation?



When we work with ordinary numbers outside of any specific context, we usually use
the decimal number system, which uses digits 0, 1, 2, 3,4, 5, 6, 7, 8, and 9.

Moving from the right, the first digit is the number of 1s, the second is 10s, the third is

100s, etc. Each digit represents a power of 10. For example, 1980 in decimal is 1 *
1000+9*100+8*10+0*1

But this isn't the only abstract number system we can use!

10¢ 100

103 102
1000 100 10 1
1 9 3 0



We can represent numbers using only the digits 0 and 1 with the binary number
system.

Instead of counting the number of 1s, 5s, 10s, and 25s in coins, or 1s, 10s, 100s,
and 1000s in abstract amounts, count the number of 1s, 2s, 4s, 8s, etc. For
example, 1101 in binaryis1*8+1*4+0*2+1*1=13in decimal.

Why these numbers? They're powers of 2. This is a number in base 2, which only
needs the digits 0 and 1.

23 22 4 21 2 20

1 1 0 1



When working with binary and computers, we often refer to a set of
binary values used together to represent a number.

A single binary value is called a bit.

A set of 8 bits is called a byte.

We commonly use some number of bytes to represent data values.



See more:
https://www.advanced-ict.info/javascript/binary counter.html

‘128 I’64 |°32 %16 |8 |°a4 |%2 |%1 2128 P64 1232 %16 |28 P4 |22 |1
0| 0| 0] O 0 0 1 —|o|/o0|o0|O0|lO]|]O]| O] 1
128 64 1732 %16 |78 |¥a |¥2 |*1 128 Y64 1’32 %16 |8 |¥a |Y2 |21
ol ool o 0 0 3 = ol ol o] o 0o 1|1
128 64 %32 |16 |28 |¥a |22 |1 128 |%64 232 %16 |28 |¥’a |?'2 |1
olo|lo|lo|o| 1010 5=ooooo1o1
128 64 1732 %16 |78 |¥a |%2 |1 ’128 64 °32 °16 |28 |4 |22 |1
Ol 0| O0O]| 0] O 1|0 7=00000111



https://www.advanced-ict.info/javascript/binary_counter.html
https://www.advanced-ict.info/javascript/binary_counter.html
https://www.advanced-ict.info/javascript/binary_counter.html

To convert a binary number to decimal, just add each power of 2 that

is represented by a 1.

For example, 00011000 =16 + 8 =24

Another example:

10010001 =128 + 16 + 1 =145

2° 24 23 22 21 20

27 26
128 64 32 16 8

0 0 0 1 1 0 0 0

24 23 22 2t 20
4 2

27 26 25
128 64 32 16 8

1 0 0 1 0 0 0 1



Converting decimal to binary uses the same process as converting dollars to
coins.

Look for the largest power of 2 that can fit in the number and subtract it from
the number. Repeat with the next power of 2, etc., until you reach 0.

For example, 36 =32+4->00100100 2;.28 2664 2532 2416 238 224 212 201
o 0 1 0 0 1 o0 O
Another example:
103 =64+39 =64+32+7 = 27 6 25 g4 23 2 1 Q0
128 64 32 16 8 4 2 1
64+32+4+3 =64+32+4+2+1 ->
o 1 1 o0 o0 1 1 1
01100111



You do: Now try converting numbers on your own.

First: what is 01011011 in decimal?

Second: what is 75 in binary?



Abstracted Types



Now that we can represent numbers using binary, we can represent
everything computers store using binary.

We just need to use abstraction to interpret bits or numbers in
particular ways.

Let's consider dates, images, and text.



It can be helpful to think logically about how to represent a value
before learning how it's done in practice. Let's do that now.

Discuss: We can convert binary directly into numbers, but how could
we use binary and number to represent a date (i.e., 01/17/2025)?



Representing Dates — Simple Approach

Use 4 bits to represent the month (1-12), 5 bits to represent the day (1-

31) and 12 bits to represent the year (1-4095). Convert the month, day,
year normally from decimal to binary.

Month Day Year
01 17 2025

lojojo|1|[1]0]/0/0[1/0[1][1|1[1[1]1]0|1]|0]0

24



In the commonly used Unix Timestamp approach, you count the seconds from a certain
date (00:00:00 of 01/01/1970) and convert the number of seconds to binary. Any dates
that occur before this time would be negative numbers, and any dates after would be

positive numbers!

We use 32 bits to represent each date; the first bit is used to indicate if the number was
positive (0) or negative (1), and the remaining 31 bits are used to represent the number of
seconds elapsed. Thus, we restrict the number of bits to represent the date to 31 bits.

01/17/2025 2pm -> 1737140400 seconds

o 1/10/0/1/ 1411000 1/0|1]0
170/1,0{1/0/0/0/1/0(1]|1]0/0]0/0

More on dates: https://busyintellisence.blog/2019/05/22/how-does-a-computer-store-data-dates/



https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/
https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/

Represent Images as Grids of Colors

What if we want to represent an image?
How can we convert that to numbers?

First, break the image down into a grid
of colors, where each square of color
has a distinct hue. A square of color in
this context is called a pixel.

If we can represent a pixel in binary, we
can interpret a series of pixels as an
image.

26



Representing Colors in Binary

We need to represent a single color (a pixel) as a number.

There are a few ways to do this, but we'll focus on RGB. Any
coldor i:an be represented as a combination of Red, Green,
and Blue.

Red, green, and blue intensity can be represented using one
byte each, where 00000000 {O) isnoneand 11111111 (255)

is very intense. Each pixel will therefore require 3 bytes to
encode.

Try it out here:
https://www.w3schools.com/colors/colors rgb.asp

27


https://www.w3schools.com/colors/colors_rgb.asp

Example: Representing Beige

To make the campus-building beige, we'd need:
Red =249=11111001
Green= 228 =11100100

Blue =183=10110111

Which makes beige!

28



Finally, how do we represent text?

First, we break it down into smaller parts, like with images. In this
case, we can break text down into individual characters.

For example, the text "Hello World" becomes

Hi e|l |l |o|space W|io|r || |d




Unlike colors, characters don't have a natural connection to numbers.

Instead, we can use a lookup table that maps each possible character
to an integer.

As long as every computer uses the same lookup table, computers
can always translate a set of numbers into the same set of characters.



ASCIl is a Simple Lookup Table

For a small set of characters,
we can use the encoding
system called ASCII. This
maps the numbers 0 to 255
to characters. Therefore, one
character is represented by

one byte.

Check it out here:
https://www.asciitable.com/

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 32 20 040 &#032; Space 64 40 100 &#064;, @ 96 60 140 &#096;
11 001 Start of Header 3321 041 &#033; ! 6541 101 &#065;, A 97 61 141 &#097;, a
2 2 002 Start of Text 34 22 042 &#034; " 66 42 102 &#066; B 98 62 142 &#098; b
33 003 End of Text 35 23 043 &#035; # 67 43 103 &#067, C 99 63 143 &#099; c
4 4 004 End of Transmission 36 24 044 &#036; $ 68 44 104 &#068;, D 100 64 144 &#100; d
55 005 Enquiry 37 25 045 &#037, % 69 45 105 &#069; E 101 65 145 &#101; e
6 6 006 Acknowledgment 38 26 046 &#038;, & 70 46 106 &#070; F 102 66 146 &#102; f
7 7 007 Bell 39 27 047 &#039; ' 71 47 107 &#071; G 103 67 147 &#103; g
8 8 010 Backspace 40 28 050 &#040; ( 72 48 110 &#072; H 104 68 150 &#104; h
99 011 Horizontal Tab 41 29 051 &#041; ) 73 49 111 &#073; 1 105 69 151 &#105; i

10 A 012 Line feed 42 2A 052 &#042; * 74 4A 112 &#074; ) 106 6A 152 &#106; |
11 B 013 Vertical Tab 43 2B 053 &#043; + 75 4B 113 &#075; K 107 6B 153 &#107; k
12 C 014 Form feed 44 2C 054 &#044; , 76 AC 114 &+#076; L 108 6C 154 &#108; |
13 D 015 Carriage return 45 2D 055 &#045; - 77 4D 115 &#077;, M 109 6D 155 &#109; m
14 E 016 Shift Out 46 2E 056 &#046; . 78 4E 116 &#078; N 110 6E 156 &#110; n
15 F 017 ShiftIn 47 2F 057 &#047; / 79 4F 117 &+#079; O 111 6F 157 &#111; o
16 10 020 Data Link Escape 48 30 060 &#048; 0 80 50 120 &#080; P 112 70 160 &#112; p
17 11 021 Device Control 1 49 31 061 &#049; 1 8151 121 &#081;, Q 113 71 161 &#113; q
18 12 022 Device Control 2 50 32 062 &#050; 2 82 52 122 &#082; R 114 72 162 &#114; r
19 13 023 Device Control 3 51 33 063 &#051; 3 83 53 123 &#083; S 11573 163 &#115; s
20 14 024 Device Control 4 52 34 064 &#052; 4 84 54 124 &#084; T 116 74 164 &#116; t
21 15 025 Negative Ack. 53 35 065 &#053; 5 8555 125 &#085; U 117 75 165 &#117; u
22 16 026 Synchronous idle 54 36 066 &#054; 6 86 56 126 &#086;, V 118 76 166 &#118; v
23 17 027 End of Trans. Block 55 37 067 &#055;, 7 87 57 127 &#087, W 119 77 167 &#119;, w
24 18 030 Cancel 56 38 070 &#056; 8 88 58 130 &#088; X 120 78 170 &#120; x
2519 031 End of Medium 57 39 071 &#057, 9 89 59 131 &#089; Y 12179 171 8u#l21; "y
26 1A 032 Substitute 58 3A 072 &#058; : 90 5A 132 &#090; Z 122 7A 172 &#122; z
27 1B 033 Escape 59 3B 073 &#059; ; 91 5B 133 &#091; [ 123 7B 173 &#123; {
28 1C 034 File Separator 60 3C 074 &#060; < 92 5C 134 &#092; \ 124 7C 174 &#124; |
29 1D 035 Group Separator 61 3D 075 &#061;, = 93 5D 135 &#093; 1 125 7D 175 &#125; }
30 1E 036 Record Separator 62 3E 076 &#062; > 94 5E 136 &#094; A 126 7E 176 &#126;, ~
31 1F 037 Unit Separator 63 3F 077 &#063; ? 95 5F 137 &#095; 127 7F 177 &#127; Del

asciichars.com

31


https://www.asciitable.com/

Translating Text to Numbers

"Yay" _>

Y

y

8997121 ->

01011001 01100001
01111001

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 32 20 040 &#032; Space 6440 100 &#064;, @ 96 60 140 &#096; °
11 001 Start of Header 33 21 041 &#033; ! 65 41 101 &#065;, A 97 61 141 &#097, a
2 2 002 Start of Text 34 22 042 &#034; " 66 42 102 &#066; B 98 62 142 &#098; b
33 003 End of Text 35 23 043 &#035; # 67 43 103 &#067;, C 99 63 143 &#099; c
4 4 004 End of Transmission 36 24 044 &#036; $ 68 44 104 &#068; D 100 64 144 &#100; d
55 005 Enquiry 37 25 045 &#037;, % 69 45 105 &#069; E 101 65 145 &#101; e
6 6 006 Acknowledgment 38 26 046 &#038;, & 70 46 106 &#070; F 102 66 146 &#102; f
7 7 007 Bell 39 27 047 &+#039; ' 71 47 107 &#071;, G 103 67 147 &#103; g
8 8 010 Backspace 40 28 050 &#040; ( 72 48 110 &#072; H 104 68 150 &#104; h
99 011 Horizontal Tab 41 29 051 &#041; ) 73 49 111 &#073; 1 105 69 151 &#105; i

10 A 012 Line feed 42 2A 052 &#042; * 74 AA 112 &#074; ) 106 6A 152 &#106; |
11 B 013 Vertical Tab 43 2B 053 &#043; + 75 4B 113 &#075; K 107 6B 153 &#107; k
12 C 014 Form feed 44 2C 054 &#044; 76 4C 114 &#076; L 108 6C 154 &#108; |
13 D 015 Carriage return 45 2D 055 &#045; - 77 4D 115 &#077, M 109 6D 155 &#109; m
14 E 016 Shift Out 46 2E 056 &#046; . 78 4E 116 &#078; N 110 6E 156 &#110; n
15 F 017 ShiftIn 47 2F 057 &#047;, / 79 4F 117 &#079; O 111 6F 157 &#111;, o
16 10 020 Data Link Escape 48 30 060 &#048; 0 80 50 120 &#080; P 112 70 160 &#112; p
17 11 021 Device Control 1 49 31 061 &#049; 1 8151 121 &#081; Q 113 71 161 &#113; q
18 12 022 Device Control 2 50 32 062 &#050; 2 82 52 122 &#082; R 114 72 162 &#114; r
19 13 023 Device Control 3 51 33 063 &#051; 3 83 53 123 &#083; S 115 73 163 &#115; s
20 14 024 Device Control 4 52 34 064 &#052; 4 84 54 124 &#084; T 116 74 164 &#116; t
21 15 025 Negative Ack. 53 35 065 &#053; 5 85 55 125 &#085; U 117 75 165 &#117;, u
22 16 026 Synchronous idle 54 36 066 &#054; 6 86 56 126 &#086; V 118 76 166 &#118; v
23 17 027 End of Trans. Block 55 37 067 &#055; 7 87 57 127 &#087;, W 119 77 167 &#119; w
24 18 030 Cancel 56 38 070 &#056; 8 88 58 130 &#088; X 120 78 170 &#120; x
25 19 031 End of Medium 57 39 071 &#057; 9 89 59 131 &#089; Y 12l 7] AGALEAZAL
26 1A 032 Substitute 58 3A 072 &#058; 90 5A 132 &#090;, Z 122 7A 172 &#122; z
27 1B 033 Escape 59 3B 073 &#059; ; 91 5B 133 &#091; [ 123 7B 173 &#123; {
28 1C 034 File Separator 60 3C 074 &#060; < 92 5C 134 &#092; \ 124 7C 174 &#124; |
29 1D 035 Group Separator 61 3D 075 &#061;, = 93 5D 135 &#093; ] 125 7D 175 &#125; }
30 1E 036 Record Separator 62 3E 076 &#062; > 94 5B 136 &#094; A 126 7E 176 &4#126;, ~
31 1F 037 Unit Separator 63 3F 077 &#063; ? 95 5F 137 &#095; 127 7F 177 &#127; Del

asciichars.com
34



There are many characters that aren't available in ASCII (characters from non-
English languages, advanced symbols, emoji...) due to the limited size.

The Unicode system represents every character that can be typed into a
computer. It uses up to 5 bytes, which can represent up to 1 trillion
characters! Find all the Unicode characters here: www.unicode-table.com

The Unicode system is also actively under development. The Unicode

Consortium regularly updates the standard to add new types of characters
and emoji.

Discuss: what are the potential repercussions of using a single standard for all
text on computers?


http://www.unicode-table.com/
http://www.unicode-table.com/
http://www.unicode-table.com/

e Understand how different number systems can represent the same
information

* Translate binary numbers to decimal, and vice versa

* Interpret binary numbers as abstracted types, including colors and
text



Bonus Slides

In case you want to learn even more about data representation

35



Your machine is either classified as 32-bit or 64-bit. This refers to the
size of integers used by your computer's operating system.

The largest signed integer that can be represented with N bits is 2N-1
(why?). This means that...

Largest int for 32 bits: 4,294,967,295 (or 2,147,483,647 with negative numbers)
Largest int for 64 bits: 18,446,744,073,709,551,615 (18.4 quintillion)



Integer Overtlow
Why does this matter?

By late 2014, the music video
Gangnam Style received more than 2
billion views. When it passed the
largest positive number that could be
represented with 32 bits, YouTube
showed the number of views as
negative instead!

Now YouTube uses a 64-bit counter
instead.

PSY - GANGNAM STYLE (2=t AEHY) MV

officialpsy =
e+ More

rrrrrr

Published on Jul 15, 2012
» Watch HANGOVER feat. Snoop Dogg M/V @
http://youtu.be/HKMNOIY cpHg

-2143713089

i 8751834 BN 1438720

37




Your computer keeps track of saved data and all the information it
needs to run in its memory, which is represented as binary. You can
think about your computer's memory as a really long list of bits,

where each bit can be set to 0 or 1. But usually we think in terms of
bytes, groups of 8 bits.

Every byte in your computer has an address, which the computer

uses to look up its value.
49 53 49 49 48 75 | 101 | 108 | 198 | 121 | 77 97 | 114 | 103 | 97 | 114 | 101 | 116
s L 1000  Addresses L 1004 L 1008 L 1012 L 1016




When you open a file on your computer, the application goes to the
appropriate address, reads the associated binary, and interprets the
binary values based on the file encoding it expects. That interpretation
depends on the application you use when opening the file, and the
filetype.

You can attempt to open any file using any program, if you convince
your computer to let you try. Some programs may crash, and others will
show nonsense because the binary isn't being interpreted correctly.

Example: try changing a .docx filetype to .txt, then open it in a plain text
editor. .docx files have extra encoding, whereas .txt files use plain ASCII.



In modern computing, we use a lot of bytes to represent information.
Smartphone Memory: 64 gigabytes = 64 billion bytes
Google databases: Over 100 million gigabytes = 100 quadrillion bytes!

CMU Wifi: 15 million bytes per second



	Slide 1: Data Representation
	Slide 2: Announcements
	Slide 3: Learning Objectives
	Slide 4: Number Systems
	Slide 5: Computers Run on 0s and 1s
	Slide 6: Abstraction is About Representation
	Slide 7: Number Systems – Coins
	Slide 8: Number Systems – Dollars 
	Slide 9: Converting Coins to Dollars
	Slide 10: Coin Number Representation
	Slide 11: Converting Dollars to Coins
	Slide 12: Conversion Example
	Slide 13: Activity: Coin Conversion
	Slide 14: Number Systems - Decimal
	Slide 15: Number Systems – Binary 
	Slide 16: Bits and Bytes
	Slide 17: Counting in Binary
	Slide 18: Converting Binary to Decimal
	Slide 19: Converting Decimal to Binary
	Slide 20: Activity: Converting Binary
	Slide 21: Abstracted Types
	Slide 22: Binary and Abstraction
	Slide 23: Discussion: Representing Dates
	Slide 24: Representing Dates – Simple Approach
	Slide 25: Representing Dates – Actual Approach
	Slide 26: Represent Images as Grids of Colors
	Slide 27: Representing Colors in Binary
	Slide 28: Example: Representing Beige
	Slide 29: Represent Text as Individual Characters
	Slide 30: Use a Lookup Table to Convert Characters
	Slide 31: ASCII is a Simple Lookup Table
	Slide 32: Translating Text to Numbers
	Slide 33: For More Characters, Use Unicode
	Slide 34: Learning Objectives
	Slide 35: Bonus Slides
	Slide 36: Size of Integers
	Slide 37: Integer Overflow
	Slide 38: Computer Memory is Stored as Binary
	Slide 39: Binary Values Depend on Interpretation
	Slide 40: We Use Lots of Bytes!

