
Course Intro &
Algorithms and Abstraction

15-110 – Wednesday 1/17

Learning Objectives

• Understand the expectations, resources, and policies associated with
15-110

• Define the essential components of computer science, algorithms
and abstraction

• Construct plain-language algorithms to solve basic tasks

2

Course Introduction

3

Purpose of 15-110

The goal of this course is to introduce you to the field of computer
science. This includes both programming and more general algorithmic
concepts.

We'll start from the basics of programming and how computers work,
then build up to how computers are used to support a variety of
applications in different fields (including your own field of study,
possibly).

4

Staff

21 Teaching Assistants!

5

Prof. Kelly
Rivers

Prof. Franceska
Xhakaj

Important Links

Course Website: https://www.cs.cmu.edu/~110

You'll find the schedule, uploaded slides, assignments, the syllabus, and
everything else you need here. Bookmark it now!

Piazza: https://piazza.com/cmu/spring2024/15110

We'll use this to handle live lecture questions. Go to LIVE Q&A in the
top-left corner to post questions and upvote other students' questions!

6

https://www.cs.cmu.edu/~110
https://piazza.com/cmu/spring2024/15110

How to Learn in 15-110

1. Attend lecture and recitation. If you can't attend live, notify the instructors
in advance to gain access to a recording and review on your own.

2. Complete the exercise associated with the lecture.

3. Complete the check-in/homework assignment associated with the lecture
content.

4. Demonstrate your knowledge on each week’s quizlet.

5. Demonstrate your knowledge on the exam associated with the lecture.

6. Demonstrate all collected knowledge in the final exam.

The bolded items all contribute to your final grade; see syllabus for details.

7

Active Learning

Lectures will primarily present new content, but we'll frequently use
active learning to give you a chance to practice new skills.

You do: turn to the person next to you and introduce yourself! Name,
major, why you're taking 15-110.

8

Important Resources

Course website: www.cs.cmu.edu/~110/

Also:

• Piazza – announcements, questions

• OH Queue – office hour questions

• Gradescope – exercises, homework handin, read feedback

• Canvas – grades

9

http://www.cs.cmu.edu/~110/
https://piazza.com/cmu/spring2024/15110
https://www.eberly.cmu.edu/ohq/#/
https://www.gradescope.com/courses/699093
https://canvas.cmu.edu/courses/39222

Collaboration Policy

We encourage you to collaborate on the assignments! We'll release
collaboration forms where you can ask to be paired up with other students in
the class to find collaborators, or you can just pair up with people you already
know.

When you collaborate, all students should contribute intellectually to the work,
and each student must write up their solutions independently. Do not have one
student solve a problem and present it to the rest of the group; instead, have all
students solve the problem together.

The following actions count as cheating, not collaboration, and lead to
penalties: copying, providing answers to others, comparing solutions, searching
for answers online, collaborating during exams/the final exam.

10

Generative AI

Tools like ChatGPT and Copilot can be useful, but they can also be a
shortcut that prevents you from learning.

You may use them for: explaining concepts, generating practice
problems, or explaining error messages.

Using these tools to solve assignment problems is an academic
integrity violation. Do not enter assignment prompts or solutions into
these tools.

11

Frequently Asked Questions - Placement

• I have no prior programming experience. Can I succeed in this class?

• Most of your classmates (usually ~75%) have no prior experience as well. You can
definitely succeed, and you're not alone!

• Should I take 15-104 (runs in fall), 15-110, or 15-112?

• Content: 104 focuses on creative applications of programming. 110 gives a broad
overview of programming and computer science. 112 focuses more deeply on
programming and problem solving.

• Pace: 104 is paced a bit slower than 110. 110 is paced slower than 112 at the beginning
(data, functions, conditionals, loops). 112 is fast-paced throughout.

• Feel free to contact the professors if you want advice on your individual situation.
12

Frequently Asked Questions – Deadlines

• What if I need to turn something in late?

• Each exercise and assignment has a regular deadline and a revision deadline.
Submissions received between the regular deadline and the revision deadline
are graded for a max of 90 points.

• Submissions made before the regular deadline may also be resubmitted for a
max of 90 points. Submit early and get feedback so you can fix your mistakes!

• Students in exceptional situations (medical/family/personal emergencies)
may reach out to the professors to arrange further extensions.

13

Frequently Asked Questions – Resources

• I'm struggling with the homework/exams. What can I do?

• Homework: use Piazza to ask short questions and see questions others have
asked. Use office hours to get one-on-one help. Consider collaborating with
other students so you have someone to bounce ideas off of. Submit early and
view your feedback after the regular deadline, then revise and resubmit. And
above all, remember that it's okay to ask for help!

• Exams: complete practice problems to get additional exposure to the
material. Go to small group sessions for more guided review of specific
concepts. Go to drop-in tutoring for one-on-one review of the topics you
struggle with.

14

Take care of yourself!

Taking care of yourself is incredibly important, especially in tumultuous
times. Your personal wellbeing is more important than academics.

Make sure you regularly eat healthy food, get enough sleep, exercise,
socialize, and take some time to relax. You will be happier, and you will do
better academically as a direct result.

We want everyone to feel welcomed and capable of learning in 15-110. If
you feel that the course is negatively impacting your wellbeing, or you do
not feel included, reach out and let us know.

15

Take-Home Tasks

Before Wednesday, do the following:

• Fill out the pre-semester survey to help us gather more information about
your incoming knowledge and interests: https://bit.ly/110-s24-pre

• Read the course syllabus: https://www.cs.cmu.edu/~110/syllabus.html
• It includes many details we did not cover here. Seriously, read it!

• Install the Thonny IDE (which includes the Python programming language)
onto your computer
• Instructions can be found here: https://www.cs.cmu.edu/~110/syllabus.html#materials

16

https://bit.ly/110-s24-pre
https://www.cs.cmu.edu/~110/syllabus.html
https://www.cs.cmu.edu/~110/syllabus.html#materials

Algorithms

17

What is Computer Science?

Computer science is the study of computation, and computational devices. This can be
studied through many different lenses, including:

• Computational theory – what are the possibilities and limitations of computation?

• Computational application – how can we use computation to fulfill a specific need?

• Computational discovery – given data, can we find patterns and answer questions
through computation?

• Computational expression – how can computation change the way we communicate
and engage with others?

• Critical computing – how does computation affect our lives, and how should it be
regulated?

What do we mean by 'computation'? We can reduce this to two core themes: algorithms
and abstraction.

18Read more: https://cacm.acm.org/blogs/blog-cacm/249787-what-liberal-arts-and-sciences-students-need-to-know-about-computing/fulltext

https://cacm.acm.org/blogs/blog-cacm/249787-what-liberal-arts-and-sciences-students-need-to-know-about-computing/fulltext

Algorithms and Abstraction

Algorithms are procedures that specify
how to do a needed task or solve a
problem. They are used to standardize
processes and communicate them
between different people.

Algorithms can be incredibly powerful,
but they're still designed by humans,
which means they're vulnerable to human
flaws.

Algorithms are like recipes, tax codes, and
sewing patterns. When you give someone
directions to a location, you're
communicating an algorithm.

Abstraction is a technique used to make
complex systems manageable by changing
the amount of detail used to represent or
interact with the system.

This can be done by identifying the most
important features of a system and
generalizing away unessential features.

Abstraction shows up in many interactions –
for example, you can pay for groceries
through many modalities (cash, debit,
credit, an app), and each is implemented
slightly differently, but all are just different
representations of money.

19

Activity – Make a PB & J Sandwich

You do: work with a group to write a
list of instructions (an algorithm) on
how to make a peanut butter and jelly
sandwich.

Before you begin, consider what level
of abstraction to use. Assume the user
knows the ingredients and how to do
basic actions, but has no cooking
experience.

We'll test your instructions in a few
minutes...

20

An Algorithm with Moderate Abstraction
1. Before starting: make sure you have a bag of bread, a jar of peanut butter, a jar of jelly, a plate, and a

knife

2. Open bag of bread

3. Reach hand in and take out 2 slices of bread

4. Place each slice on a plate

5. Open jar of peanut butter

6. Pick up knife and stick sharp side of knife into open jar

7. Use knife to scoop out peanut butter

8. Wipe and spread peanut butter on one slice of bread

9. Repeat 5, 6, 7 until slice of bread is covered in peanut butter. Then close jar

10. Open jar of jelly

11. Pick up knife and stick sharp side of knife into open jar

12. Use knife to scoop out jelly

13. Wipe and spread jelly on non-PB slice of bread

14. Repeat 10, 11, 12 until the slice of bread is covered in jelly. Then close jar.

15. Put the peanut butter side of one slice of bread on the jelly side of the other.

16. Result: you now have a peanut butter and jelly sandwich on a plate 21

We assume that the
user can identify the
ingredients and tools,
and knows basic
actions, but does not
know complex actions.

An Algorithm with Heavy Abstraction

1. Before starting: make sure you have bread, peanut butter, and jelly

2. Get two slices of bread

3. Spread peanut butter on one slice

4. Spread jelly on the other slice

5. Combine slices into a sandwich

6. Result: you now have a peanut butter and jelly sandwich

22

If we've already taught
someone the basics of
sandwich-making, teaching
them to make a PB & J
sandwich is a lot simpler!

Note that we don't define
how to spread the peanut
butter or jelly. Maybe the
user will have a different
approach to ours.

An Algorithm with Little Abstraction

1. Before starting: make sure you have [specific quantity and type of bread
in plastic bag with tab], hand, plate...

2. Define bread as a grain-based substance that has been divided into 1
inch wide parts (slices). Bread is in a plastic container (bag)

3. Open bread bag by gently pulling a plastic tab away from the plastic
wrap.

4. Define hand as the appendage at the end of your arm. Define fingers as
the smaller appendages at the end of your hand

5. Define plate as a hard, flat, usually-circular surface

6. Move hand into the opening in the bread bad. Move fingers to close
position around the top bread slice

7. Lift hand until it is outside of bread bag.

8. Move hand over the plate, then down so that it is touching plate. Open
fingers around the bread slice.

9. Repeat steps 5-7 so that a second bread slice is on the plate.

10. ... 23

If someone doesn't
even know the basic
assumptions (a toddler,
or a robot), we'll need
to define every item
used and how to
execute even the
simplest steps. And
we're still making
assumptions here!

Designing Good Algorithms

Designing algorithms at the right level of abstraction is a large part of computer
science. When we represent an algorithm as program code, we communicate
with a computer to tell it how to do a specific task.

What are the core parts of an algorithm?

• It should specify what is needed at the beginning (input)

• It should specify what is produced at the end (output)

• It should specify how to get from the beginning to the end (steps)

We'll come back to this idea of input, output, and steps next week when we
learn about functions.

24

Post-Lecture Questions

Still confused about some of the topics from lecture? Feel free to post
follow-up questions on Piazza!

TAs will monitor the site to answer questions throughout the week.

26

Learning Objectives

• Understand the expectations, resources, and policies associated with
15-110

• Define the essential components of computer science, algorithms
and abstraction

• Construct plain-language algorithms to solve basic tasks

27

	Slide 1: Course Intro & Algorithms and Abstraction
	Slide 2: Learning Objectives
	Slide 3: Course Introduction
	Slide 4: Purpose of 15-110
	Slide 5: Staff
	Slide 6: Important Links
	Slide 7: How to Learn in 15-110
	Slide 8: Active Learning
	Slide 9: Important Resources
	Slide 10: Collaboration Policy
	Slide 11: Generative AI
	Slide 12: Frequently Asked Questions - Placement
	Slide 13: Frequently Asked Questions – Deadlines
	Slide 14: Frequently Asked Questions – Resources
	Slide 15: Take care of yourself!
	Slide 16: Take-Home Tasks
	Slide 17: Algorithms
	Slide 18: What is Computer Science?
	Slide 19: Algorithms and Abstraction
	Slide 20: Activity – Make a PB & J Sandwich
	Slide 21: An Algorithm with Moderate Abstraction
	Slide 22: An Algorithm with Heavy Abstraction
	Slide 23: An Algorithm with Little Abstraction
	Slide 24: Designing Good Algorithms
	Slide 26: Post-Lecture Questions
	Slide 27: Learning Objectives

