Propositional logic _

(/edit_new.html#/pages/groups/18)

1. Arguments

Logical arguments are everywhere: from such-and-such assumptions follow these-and-
those conclusions. In these notes we will go over formal logical arguments. It's important
to keep in mind, though, that all arguments (formal or informal) follow similar rules: it's
important to

e state assumptions clearly

e describe, for each step, which earlier assumptions or conclusions are inputs, and
what conclusion we're now drawing for later use

e organize arguments into digestible (and independently checkable) chunks

e write out everything in enough detail that anyone who comes along later can follow
the argument.

Formal logic is the (sometimes painfully) detailed version of the above rules. In practice
we typically skip lots of details when we communicate an argument to another

human — but it's essential to remember that the details can make or break the
correctness of an argument, even if they're invisible.

2. Propositional logic

The reasoning system called propositional logic is at the heart of many other, more
complicated reasoning systems. In propositional logic, variables a, b, ... (called
propositions or predicates) represent truth values T or F, and connectives v, A,—, —
represent OR, AND, NOT, and IMPLIES.

Alternate notations include @ or ~a for —a; a D bfora — b; a& b, a - b, or ab for a A b;
a|boratbforavb; TforT; L for F. Falsehood F' is sometimes also called absurdity
or contradiction.

For readability, we'll often use longer names for variables such as done or man(Socrates).
That last name looks like a function call, and in fact we can give it that semantics in a
more expressive system called first-order logic, but for now think of it as a really
complicated variable name.

29
39
Aq
59
69
79
8q
oq
109
119
129
13 4
149


https://qna.cs.cmu.edu/edit_new.html#/pages/groups/18

3. Inference rules and proofs

To work with statements in propositional logic, we use inference rules. The most famous
of these is probably modus ponens: from premises ¢ and ¢ — y, conclude y. The
premises ¢ and ¢ — w are assumptions or previously proven statements; ¢ and y can be
single variables or more complex statements containing connectives.

We can put several statements connected by inference rules together into a proof. For
example: to say "Socrates is a man; if Socrates is a man then Socrates is mortal,
therefore Socrates is mortal", we can write

1. man(Socrates) [assumption]
2. man(Socrates) — mortal(Socrates) [assumption]
3. mortal(Socrates) [modus ponens; 1, 2]

For clarity, we've numbered the statements, and labeled each one with a justification:
either that it is an assumption, or how we derived it from previous lines. In the latter case,
we listed the inference rule (modus ponens) as well as which statements were the
premises (1 and 2).

All statements in a proof must have a justification! The only possible kinds of justifications
are the two above: either it's an assumption, or it follows from some earlier statements
via an inference rule. Sometimes people omit justifications or skip steps when they are
clear from context, but beware: "clear from context" is in the eye of the beholder.

The format above is often called a "two-column proof": we write statements in the left
column, and their justifications in the right column.

4. Lemmas
The above proof demonstrates the statement
man(Socrates) A (man(Socrates) — mortal(Socrates)) — mortal(Socrates)

To see why, collect all of the proof's assumptions together with A , take the last line of the
proof as the final conclusion, and write "assumptions — conclusion”. (We could actually
have taken any line of the proof as the conclusion, but conventionally we put the
conclusion last.)

This process — summarizing a proof or part of a proof by collecting together its
assumptions and conclusion — is called "implication introduction" or "proving a lemma".

To go with implication introduction, modus ponens is sometimes called "implication
elimination.”



5. Other inference rules

There are lots of useful inference rules besides implication introduction and implication
elimination. For example:

® A introduction: if we separately prove ¢ and y, then that constitutes a proof of

¢ A y.

A elimination: from ¢ A w we can conclude either of ¢ and w separately.

VvV introduction: from ¢ we can conclude ¢ Vv y for any .

v elimination (also called proof by cases): if we know ¢ Vv y (the cases) and we

have both ¢ — y and w — yx (the case-specific proofs), then we can conclude y.

e Tintroduction: we can conclude T from no assumptions.

e F elimination: from F we can conclude an arbitrary formula ¢. (This rule is
sometimes called ex falso or ex falso quodilibet, from the Latin for "from falsehood,
anything.") This rule can be counterintuitive, but one way to think about it is this: we
should never be able to prove F, so there's no danger in letting ourselves prove an
arbitrary formula given F.

e Associativity: both A and Vv are associative: it doesn't matter how we
parenthesize an expression like a A b A ¢ A d. (So in fact we often just leave the
parentheses out.)

e Distributivity: A and v distribute over one another; for example, a A (b V ¢) is
equivalent to (a A b) V (a A ¢).

e Commutativity: both A and v are commutative (symmetric in the order of their
arguments), so we can re-order their arguments however we please. For example,
bV cVaisequivalenttoavbvec.

For conciseness, sometimes we'll allow proofs to use multiple inference rules in each
step, and to skip listing out all of them, so long as it is clear which ones we are using. For
example, we might rearrange an expression using associativity, distributivity, and
symmetry all at once. (But for the duration of the current unit on propositional logic, we'll
ask you to use just one inference rule per step.)

6. Exercise

Use the above inference rules to prove
(anb)—> (bAa).

Write your proof in two-column format: i.e., give an explicit justification for each statement
based on previous statements.

Reminder: use only the above rules, even if you've learned other useful rules in previous
COUrses.

Exercise, version 2: prove the same statement without using the inference rule for
commutativity.



7. Negation; constructive logic

You may have noticed that none of the inference rules above mention negation. That's
because there are actually two interesting ways to handle negation, which we describe
next.

In both cases we define —¢ as a shorthand for ¢ — F. That is, —¢ is true precisely when ¢
would lead to a contradiction.

The first way to handle negation is to stop here: we add no new inference rules, and work
with negations via the existing rules for implications and falsehood. With this treatment of
negation, we get a system called constructive or intuitionistic propositional logic.
Constructive logic is convenient because its semantics nicely mirror those of programming
languages — but that's a topic for a different course. (15-317, in case you're interested.)

The one aspect of constructive logic that is sometimes counterintuitive is that it allows
formulas to be neither true nor false. A formula is true if we can find a proof for it, and false
if we can show that it is a contradiction (i.e., find a proof for its negation). But it is perfectly
possible that, for some formula ¢, we can't prove either ¢ or —¢.

8. Classical logic

The second way to handle negation is classical propositional logic, which is the version
that most people are familiar with. In classical logic we keep all of the definitions and
inference rules above, and add an inference rule that forces statements to be either true
or false (even if we don't know which). This rule is called the

e [aw of the excluded middle: ¢ v —¢ holds for any statement ¢.

There are in fact many inference rules that we could add instead of (or in addition to) the
law of the excluded middle, including

e De Morgan's laws: —(¢ Vv y) is equivalent to —¢ A —~w, and —(¢ A ) is equivalent to

—¢ V .
e double negation elimination: —¢ is equivalent to ¢.
e contraposition: ¢ — w is equivalent to ~y — —¢.

All of these are equivalent: from any one of these (plus the inference rules above) we can
prove the others.

(To be precise: we can't actually prove an inference rule — we can only prove statements
of propositional logic, and inference rules are not statements but rules for working with
statements. Instead, we can make a recipe: whenever we were about to use (say) De
Morgan's laws, here are the steps we'd use to get the same effect using only the law of
the excluded middle.)



9. Resolution

A useful inference rule — one that is not as well known as some — is resolution. Many
automated reasoning systems use resolution as their key inference tool. Versions of
resolution hold in both classical and constructive logic, but here we focus on the classical
version.

Suppose we have two statements of the form
¢V TPV,

Here ¢, x, w may be any formulas of propositional logic. Note that ¢ appears in both
formulas: negated in one, but not the other.

Given the above formulas, resolution lets us conclude
XVy.

That is, we delete ¢ and —¢ from our formulas, and join together what's left using v .

10. Resolution on clauses

A common case for resolution is that we have two long clauses or disjunctions of literals,
l.e., formulas where we connect a bunch of literals (variables or negated variables) with v
. (This case is common because it can form the basis of a complete reasoning system,
l.e., a system that can find a proof for a fact whenever one exists. The details of such a

system are beyond this course, but if you're curious, they're covered in 15-780 Graduate
Al.)

Given two clauses, we can use resolution exactly when a positive literal in one formula
matches a negative literal in the other: we take ¢ to be the positive literal (so that —¢ is the
negative literal), and take y and y to cover all the remaining literals in our two clauses.

The result is something like this: from

avbv—-cvdVv—e bv—-dvf

we use resolution on the literal d (which appears positively in the first clause and negatively
in the second) to conclude

avbv—cv—eVf.

The conclusion contains every literal that was in either of the two original clauses, except
for d and —d. Note that we have applied one additional (commonly needed) simplification:
the literal b appears in both input clauses, but only shows up once in the output, since
bV b < b.



11. Scoping rules

So far we've looked at simple proofs, where we need at most one lemma. For
complicated proofs, we may have several lemmas. These lemmas may even be nested:
within a lemma we need a sub-lemma to prove some useful sub-result. For readability,
we'll indent the proofs of the lemmas to indicate nesting, as in the following example.

In this example there are three propositions: PB, J, Sandwich. Their intended interpretations

are "we have some peanut butter”, "we have some jelly", and "we can make a sandwich".
The proof connects two different ways of making a sandwich; we'll give a more detailed
natural-language interpretation later on.

1. Lemma:
1. Assume: PB A J — Sandwich
2. Lemma:
1. Assume: PB
2. Lemma:
1. Assume: J
2. PBAJ [from1.2.1,1.2.2.1, A -introduction]
3. Sandwich [from 1.2.2.2, 1, modus ponens|
3. Endlemma: J — Sandwich
3. End lemma: PB — (J — Sandwich)
2. Endlemma: [PB A J — Sandwich] — [PB — (J — Sandwich)]

We've ended each lemma with a reminder of the result that it proves, using the same rule
as above: collect all assumptions made within the lemma, and write "assumptions —

conclusion."

These nested lemmas obey scoping rules, just like computer programs: each lemma is its
own scope, and assumptions are only available inside their scopes (including nested
scopes). In more detail:

e Assumptions made outside a lemma, in an enclosing scope, are available to use
inside the lemma. But, these assumptions don't get collected in the lemma's result;
instead, they will get collected later on when we end the enclosing scope.

e Assumptions made inside a lemma are no longer available once we end the lemma;
instead, only the result of the lemma is available.

e S0, when we collect the assumptions for a lemmma, we skip any assumptions inside
sub-lemmas: those assumptions are no longer available in the current scope.



12. Just like computer programs

In fact, we can use Python to define a simple mini-language that lets us construct (and
check) proofs: for example, here is a version of the proof above that (a A b) — (b A a).

startLemma()
assume(And(a, b))
andElim(And(a, b), 0)
andElim(And(a, b), 1)
andIntro(b, a)
endLemma(And(b, a))

See the code handout for more details.

13. Reading a proof

Let's interpret the proof from above. The overall result is

[PB A J — Sandwich] — [PB — (J — Sandwich)]

which we can read as: "Suppose that peanut butter and jelly together make a sandwich.
Then, if you give me peanut butter, it will mean that jelly is enough to make a sandwich."

There are three nested scopes in the proof: the outermost lemma starts at line 1, a
second lemma starts at line 1.2, and a final lemma starts at line 1.2.2. Let's look at the
innermost scope first (the one that starts at 1.2.2): this lemma proves J — Sandwich. In
doing so, it gets to use assumptions that were made in enclosing scopes. In particular it
uses PB, which was assumed on line 1.2.1, to be able to get PB A J; and, it uses

PB A J — Sandwich, assumed on line 1.1 in the top-level scope, to translate PB A J into
Sandwich.

Now let's look at the next scope out (the one that starts at line 1.2): this scope proves

PB — (J — Sandwich). Almost all the work for this happens in the inner lemma that we
already looked at: the only thing we need to do in the current scope is assume PB so that
this assumption is available for the inner lemma to use.

At the top level scope, the story is the same: our only work in this scope is to make an
assumption (line 1.1) that we'll need later on.



14. Exercise: mini sudoku

In mini sudoku, the digits 1..4 must appear exactly once in each row, column, and bold-
edged 2*2 box of the grid. In the grid below, we've been given five fixed digits (e.g., the 3
in the upper right corner). The squares labeled a, b, ¢, d are currently blank, and we'd like
to figure out how to fill them in:

d \Aﬁ

For example, we know that square d can't contain the digit 2, because there's already a 2
directly above it in the same column.

V—"

Fill in the squares a, b, ¢, d. (Note: no guessing is required.)

Use the rules of propositional logic to write down the constraints that squares a, b, c, d
must satisfy. For example, you should write that the digit 1 must appear exactly once in
the squares a, b, ¢, d. (It may take several logical formulas to implement this constraint.)
For another example, you should write that the digit 2 can't appear in squares b or d
(because of the 2 above them in the same column).

Prove that the solution you gave above is correct, using your formulation of the
constraints together with the rules of propositional logic.

Loading [MathJax]/jax/output/HTML-CSS/jax.js




