
10-607
Computational
Foundations for
Machine Learning

Recursion, Induction, &
Dynamic Programming

Instructor: Pat Virtue

Plan
Recursion

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Divide and Conquer

▪ Sorting example

Dynamic Programming

▪ Overlapping subproblems

▪ Examples

Factorial

Complete the recursive function for factorial!

Note: A recursive function calls itself

def factorial(int n):

if ___________:

return ___________

return ___________________

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

Recursion

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html

Template

def recursiveFunction():

if (this is the base case):

do something non-recursive

else:

do something recursive

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html

Recursion Examples

List sum

Problem: sum all of the numbers in a given list

def listSum(L):

Base Case: the list is empty, so the sum is 0

if (len(L) == 0):

return 0

else:

Recursive Case: assume we already know the sum of the entire list

after the first element. Add that sum to the first element.

return L[0] + listSum(L[1:])

print(listSum([2,3,5,7,11])) # 28

Slide credit: CMU 15-112

Recursion Examples

Power

Problem: raise the number base to the given exponent

def power(base, expt):

assume expt is non-negative integer

if (expt == 0):

return 1

else:

return base * power(base, expt-1)

print(power(2,5)) # 32

Slide credit: CMU 15-112

Recursion Examples

Power – Multiple base cases!

def power(base, expt):

This version allows for negative exponents

It still assumes that expt is an integer, however.

if (expt == 0):

return 1

elif (expt < 0): # new recursive case!

return 1.0 / power(base, abs(expt))

else:

return base * power(base, expt-1)

print(power(2,5)) # 32

print(power(2,-5)) # 1/32 = 0.03125 Sl
id

e
cr

ed
it

:
C

M
U

 1
5

-1
1

2

Plan
Recursion

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Divide and Conquer

▪ Sorting example

Dynamic Programming

▪ Overlapping subproblems

▪ Examples

Iterative vs Recursive
Factorial

Iterative

def factorial(n):

result = 1

for i in range(2, n + 1):

result *= i

return result

print(factorial(5))

Recursive

def factorial(n):

if (n < 2):

return 1

else:

return n * factorial(n - 1)

print(factorial(5))

Heap
0

Memory
Stack long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result;

result = factorial(n);

cout << result << endl;

}

How does this look in memory?

How does this look in memory?

Heap

main()

0

4

0result:

n:

Memory
long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

The “stack” part of memory is a
stack

Function call: push

Return: pop

“Stack” part of memory is a stack

main() 4

0result:

n:

factorial() 4n:

Memory
long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

“Stack” part of memory is a stack

main() 4

0result:

n:

factorial() 4n:

Memory
long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

factorial() 3n:

factorial() 2n:

factorial() 1n:

factorial() 0n:

“Stack” part of memory is a stack

main() 4

0result:

n:

factorial() 4n:

Memory
long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

factorial() 3n:

factorial() 2n:

factorial() 1n:

factorial() 0n:
1

“Stack” part of memory is a stack

main() 4

0result:

n:

factorial() 4n:

Memory
long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

factorial() 3n:

factorial() 2n:

factorial() 1n:

1

2

6

24

“Stack” part of memory is a stack

main() 4

24result:

n:

Memory
long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

Heap
0

Memory

What can go wrong?

Stack long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n-1);

}

int main() {

int n = 4;

long result = 0;

result = factorial(n);

cout << result << endl;

}

STACK SIZE LIMIT

Demo: Stack of elephants

Heap
0

Memory
Stack

STACK SIZE LIMIT

Demo: Stack of elephants

main() 10

50size:

num:

Memory
void stack_of_elephants(

int num, int size) {

if (num == 0) {

return;

}

int elephant_array[size]

stack_of_elephants(num-1, size);

}

int main() {

int num = 10;

int size = 50;

stack_of_elephants(num, size)

}

stack_of_elephants

STACK SIZE LIMIT

10

50size:

num:

Demo: Stack of elephants

main() 10

50size:

num:

Memory
void stack_of_elephants(

int num, int size) {

if (num == 0) {

return;

}

int elephant_array[size]

stack_of_elephants(num-1, size);

}

int main() {

int num = 10;

int size = 50;

stack_of_elephants(num, size)

}

STACK SIZE LIMIT

Demo: Stack of elephants

main() 10

50size:

num:

Memory
void stack_of_elephants(

int num, int size) {

if (num == 0) {

return;

}

int elephant_array[size]

stack_of_elephants(num-1, size);

}

int main() {

int num = 10;

int size = 50;

stack_of_elephants(num, size)

}

STACK SIZE LIMIT

Images: http://xkcdsw.com/1361 (https://xkcd.com/555/)

http://xkcdsw.com/1361
https://xkcd.com/555/

Plan
Recursion

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Divide and Conquer

▪ Sorting example

Dynamic Programming

▪ Overlapping subproblems

▪ Examples

Proof by Induction
Template

▪ Prove proposition for base case, e.g., n=0

▪ Inductive step

▪ Assume proposition holds for n=k

▪ Prove proposition holds for n=k+1

Proof by Induction
Example: Prove sum of integers 1 to n is n(n+1)/2

Exercise 1
Use induction to prove that for 𝑓 𝑛 = 𝑛2 in 𝑂(2𝑛)

Plan
Recursion

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Divide and Conquer

▪ Sorting example

Dynamic Programming

▪ Overlapping subproblems

▪ Examples

Divide and Conquer
Merge sort

Detailed code: 15-112 Merge Sort

def mergesort(L):

if (len(L) < 2):

return L

else:

mid = len(L)//2

left = mergesort(L[:mid])

right = mergesort(L[mid:])

return merge(left, right)

print(mergesort([1,5,3,4,2,0]))

https://www.kosbie.net/cmu/spring-16/15-112/notes/notes-recursion-examples.html#mergesort

Divide and Conquer
Merge sort

Detailed code: 15-112 Merge Sort

def mergesort(L):

if (len(L) < 2):

return L

else:

mid = len(L)//2

left = mergesort(L[:mid])

right = mergesort(L[mid:])

return merge(left, right)

print(mergesort([1,5,3,4,2,0]))

https://www.kosbie.net/cmu/spring-16/15-112/notes/notes-recursion-examples.html#mergesort

Plan
Recursion

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Divide and Conquer

▪ Sorting example

Dynamic Programming

▪ Overlapping subproblems

▪ Examples

Reminder Binary Search
binarySearch2(data, key, first, last) {

// TODO base case

int mid = (first + last) // 2;

if (data[mid] == key)

return true;

else if (data[mid] > key)

return binarySearch2(data, key, first, mid-1);

else

return binarySearch2(data, key, mid+1, last)

}

Graph of recursive calls

Exercise 2: Fibonacci Naïve

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#memoization

Fibonacci
N Value

0 1

1 1

2 2 = 1+1

3 3 = 1+2

4 5 = 2+3

5 8 = 3+5

6 13 = 5+8

7 21 = 8+13

Notebook

Exercise 3: Fibonacci Naïve
Graph of recursive calls

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2html#memoization

Fibonacci Dynamic Programming
Graph with overlapping subproblems

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#memoization

Fibonacci Dynamic Programming
Notebook

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#memoization

Dynamic Programming
Efficient way to solve problems that can take a long time

▪ Dividing them into a set of smaller problems

▪ Optimal solutions of each subproblem are stored and used to find
the optimal solution for the larger problem

▪ Unlike divide and conquer, these problems can overlap.

Slide credit: Avrim Blum and Anupam Gupta

Examples from ML
Dynamic Programming

MDP: Racing Search Tree

Slide: ai.berkeley.edu

MDP: Racing Search Tree

Slide: ai.berkeley.edu

MDP: Racing Tree Example

Sl
id

e
:

ai
.b

er
ke

le
y.

ed
u

MDP: Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Slide: ai.berkeley.edu

2m 3m 18m 9m 27m

O S S O C

1
m

in

2
m

in

3
m

in

…

O .1 .2 .3

S .01 .02.03

C 0 0 0

Hidden Markov Model

45

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states / travel times with an assumption of dependence between

adjacent tunnel states.

p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * …)

O S C

O .9 .08.02

S .2 .7 .1

C .9 0 .1

1
m

in

2
m

in

3
m

in

…

O .1 .2 .3

S .01 .02.03

C 0 0 0

O S C

O .9 .08.02

S .2 .7 .1

C .9 0 .1

O .8

S .1

C .1

Y2 Y3Y1

X3X2X1

find preferred tags

Forward-Backward Algorithm: Finds Marginals

46

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a

