10-607
Computational
Foundations for
Machine Learning

Recursion, Induction, &
Dynamic Programming

Instructor: Pat Virtue

Plan

Recursion

= Recursion

= Practical considerations
" Proof by induction

Divide and Conquer
= Sorting example

Dynamic Programming
= Qverlapping subproblems
= Examples

Factorial

Complete the recursive function for factorial!
Note: A recursive function calls itself

0l=1

def factorial (int n) : 11=1
if : S— 21 =2
return 31=6

return 4 =24

Recursion :/

https://www.cs.cmu.edu/~112/notes/notes-recursion-partl.html

Template

def recursiveFunction () :
1if (this 1s the base case):
do somethling non-recursive

else:

do something recursive

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html

Recursion Examples

List sum

Problem: sum all of the numbers in a given list

def [listSum (L)|:

Base Case: the list is empty, so the sum is 0

if (len (L) == 0):
return O

else:

Recursive Case: assume we already know the sum of the entire list

after the first ement. Add that sum to the first element.

return L[0] +H listSum(L[1l:1])

‘

print (listSum([2,3,5,7,111)) # 28

Recursion Examples

Power

Problem: raise the number base to the given exponent

defase, expt) :

assume expt i1s non-negative integer
if (expt == 0): &
return 1

else:

return base *base, expt-1) Q ‘ :2
\\

print (power (2,5)) # 32

Recursion Examples
Power — Multiple base cases!

def power (base, expt):
This version allows for negative exponents
It still assumes that expt is an integer, however.
if (expt == 0):
return 1

elif (expt < 0): # new recursive case!

o

return 1.0 / power (base, abs (expt))
else:

return base * power (base, expt-1)

print (power (2,5)) # 32
print (power (2,-5)) # 1/32 = 0.03125

Plan

Recursion

= Recursion

= Practical considerations
" Proof by induction

Divide and Conquer
= Sorting example

Dynamic Programming
= Qverlapping subproblems
= Examples

Ilterative vs Recursive

Factorial

Ilterative

def factorial (n):
result = 1

result *= 1
——————
return result

-
print (factorial (5))

for 1 in range (2, n + 1):

Recursive ‘Z

def factorial (n) :

if (n < 2):
return 1
else:
return n * §§ctorial(n - 1)

\

print (factorial (5))

How does this look in memory?

Memory
Stack long factorial (int n) {
if (n == 0) {
return 1;

}

return n * factorial (n-1);

}

int main() {
int n = 4;

long result;
result = factorial (n) ;

cout << result << endl;

Heap }

How does this look in memory?
Memory

main () n: 1°ngiffa(it°—r_léz)];(l{nt n) {
1t: T
= return 1;

}

return n * factorial (n-1);

}

int main() {

int n = 4;‘5 '

long result = 0; &
=, result = factorial (n);

cout << result << endl;

Heap }

The “stack™ part of memory is a
stack

Function call: push
Return: pop

“Stack” part of memory is a stack
Memory

main () n: | 4 lonq factorial (int n) {
if (n == 0) {
result:
return 1;
factorial () n:| 4 }

return n * factorial (n-1);

}

int main() {
int n = 4;

long result = 0;
result = factorial (n) ;

cout << result << endl;

“Stack” part of memory is a stack
Memory

main () n: 1onq factorial (int n) {

if (n == 0) {

result:
return 1;
factorial() n:| 4 }
factorial () n:| 3 return n * factorial (n-1);
}

factorial () n:| 2
factorial() n:| 1 int _maln 0 {

int n = 4;
factorial() n:| O

long result = 0;
result = factorial (n) ;

cout << result << endl;

“Stack” part of memory is a stack
Memory

main () . long factorial (int n) {
if (n == 0) {
result:
return 1;
factorial () n: 4 } g
factorial() n:| 3 return * factorial (n-1);
————
. }
factorial () n:| 2 }
factorial() n:| 1 1nt.ma1n() t
::>]_ int n = 4;
factorial() n:| O

long result = 0;
result = factorial (n) ;

cout << result << endl;

“Stack” part of memory is a stack
Memory

main () n: long factorial (int n) {
if (n == 0) {
result: eturn 1.
24 ’
factorial () n:| 4 }
6
factorial () n:| 3 return n * factorial(n-1);
2)
factorial () n:| 2
factorial() n:| 1 int _maln 0 {
int n = 4;

long result = 0;
result = factorial (n) ;

cout << result << endl;

“Stack” part of memory is a stack
Memory

long factorial (int n) {
if (n == 0) {
return 1;

main () n: 4

result: | 24

}

return n * factorial (n-1);

}

int main() {
int n = 4;

long result = 0;
result = factorial (n) ;

===

cout << result << endl;

What can go wrong?

Memory
Stack long factorial (int n) {
if (n == 0) {
return 1;

}

return n * factorial (n-1);

}

int main() {
int n = 4;

long result = 0;
result = factorial (n) ;

cout << result << endl;

Heap }

Demo: Stack of elephants
Memory

Stack

Heap

Demo: Stack of elephants
Memory

main () num: | 10 void stack of elephants(
int num, int size) {

if (num == 0) {

stack of elephants return;

}

size: | 50

num: | 10

size: | 50

int elephant_array[size] S~—~—

stack of elephants(num-1, size);
} -

int main() {
STACK SIZE LIMIT int num = 10; &—
=T T = = int size = 50; &—

stack of elephants(num, size)

Demo: Stack of elephants
Memory

main () num: | 10 void stack of elephants(

int num, int size) {
if (num == 0) {

size: | 50

return;

int elephant array[size]

stack of elephants(num-1, size);

int main() {
STACK SIZE LIMIT int num = 10;

SRS = int size = 50;

stack of elephants(num, size)

Demo: Stack of elephants
Memory

main () num: | 10 void stack of elephants(

int num, int size) {
if (num == 0) {

size: | 50

return;

int elephant array[size]

stack of elephants(num-1, size);

}

int main() {
int num = 10;
" int size = 50; 5000 O

stack of elephants(num, size)

K&k

A fatal error h

Ox00000539 0x4641494C
Dx4F4FS052 Ox7EEBLZG4

Ctrl+Alt+Delete to

S5
ta)

Pre

re

Images: http://xkcdsw.com/1361 (https://xkcd.com/555/)

http://xkcdsw.com/1361
https://xkcd.com/555/

Plan

Recursion
" Recursion
\/- Practical considerations

" Proof by induction

Divide and Conquer
= Sorting example

Dynamic Programming
= Qverlapping subproblems
= Examples

Proof by Induction

Template
" Prove proposition for base case, e.g., n=0

" |nductive step
= Assume proposition holds for n=k
"= Prove proposition holds for n=k+1 =—

f(V\\) = n(n:D/2

Proof by Induction N b
Example: Prove sum of integers 1 to n is n(n+1)/2 @ (\U!\) /Y*f*n/l
Ea se n= |

Oy = 1(1+1)/2 =\ /
Ascume n=k “old £k
Prove wn=lk4\ 3% (o((reT

£(ksD) = Hk) + k4]

= g%kk\\/.z ? ks |
= \(K(k+)) +2() +\)
v = () (k1 /_2) &

Exercise 1

Use induction to prove that for f(n) = n% in 0(2")
=)
n=5

2
Base n=5 > /i— -

2
Assume nN=k * KTEZ

Pf&ve n= k< :

Plan

Recursion

= Recursion

= Practical considerations
" Proof by induction

Divide and Conquer
= Sorting example

Dynamic Programming
= Qverlapping subproblems
= Examples

Divide and Conqguer

Merge sort
Detailed code: 15-112 Merge Sort

def mergesort (L) :
1f (len(L) < 2):
return L

else:
mid = len(L)//2
_—— left = mergesort (L[:mid])
— right = mergesort(L[mid:])

return merge (left, right)

print (mergesort([1,5,3,4,2,0]))

https://www.kosbie.net/cmu/spring-16/15-112/notes/notes-recursion-examples.html#mergesort

. M(\—-——f
Divide and Conquer

Merge sort
Detailed code: 15-112 Merge Sort
]

—

def mergesort (L) :
1f (len(L) < 2):
return L
else:
mid = len(L)//2
left = mergesort (L[:mid])
—=right = mergesort (L[mid:])
return merge (left, right)

print (mergesort ([1,5,3,4,2,0]))

https://www.kosbie.net/cmu/spring-16/15-112/notes/notes-recursion-examples.html#mergesort

Plan

Recursion

= Recursion

= Practical considerations
" Proof by induction

— Divide and Conquer
= Sorting example

—Dynamic Programming
= Qverlapping subproblems
= Examples

Reminder Binary Search

Graph of recursive calls

qS(L"T fuzj»

binarySearch2 (data, key, first,
// TODO base case
int mid = (first + last) // 2;
1f (data[mid] == key)
return true;
else 1f (data[mid] > key)
return binarySearch?2 (data,

else
return binarySearch?2 (data,

first, mid-1);

last) {
key,
key, mid+1,

last)

Exercise 2: Fibonacci Naive
Notebook

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#fmemoization

Fibonacci
Value

. . . . def fib(n):
Exercise 3: Fibonacci Naive 0o

return 1
Graph of recursive calls else:

£(5)

return fib(n-1) + fib(n-2)

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2html#fmemoization

Fibonacci Dynamic Programming

Graph with overlapping subproblems

f(ﬂ

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#fmemoization

Fibonacci Dynamic Programming
Notebook

https://www.cs.cmu.edu/~112/notes/notes-recursion-part2.html#tmemoization

Dynamic Programming

Efficient way to solve problems that can take a long time

" Dividing them into a set of smaller problems

= Optimal solutions of each subproblem are stored and used to find
the optimal solution for the larger problem

= Unlike divide and conquer, these problems can overlap.

Examples from ML

Dynamic Programming

MDP: Racing Search Tree

MDP: Racing Search Tree

ORI CUORNERRRE FEOT FHERTEORE LILRNE TR

MDP: Racing Tree Example

[w(@a) Vi() vm-)] - {

{w(é&:@) Vs(@) Vs(4as) @{

AR RN

AV T Y| Y O

IIIIIIIIIIIIIIIIIIIIII

THITRIN IR

L

L

Hhi‘!“

N

VT O

nshhh“ h‘i“

VT O i

IIIIIIIIIIIII

THTIRLLL

!

MDP: Value Iteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maf;lXZT(s, a,s’) {R(s,a,, s + ’)/V]{(S,)}

S

Repeat until convergence i

Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states [travel times with an assumption of dependence between
adjacent tunnel states.

P(0,s,5,0,C,2m, 3m, 18m,9m,27m) = (.8 *.08 * .2*.7% .03 *...)

Forward-Backward Algorithm: Finds Marginals

darginal probability p(Y, = a)
1/Z) * total weigl%t of A 46

