
Warm-up as you walk in

Complete the recursive function for factorial!

Note: A recursive function calls itself

def factorial(int n):

if ___________:

return ___________

return ___________________

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

10-607
Computational
Foundations for
Machine Learning

Recursion

Instructor: Pat Virtue

Plan
Computational Complexity

▪ Dealing with multiple inputs

▪ Exercises

Recursion

▪ Guess a number

▪ Binary search

▪ Computational complexity

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Computation Complexity
Previous lecture slides

Plan
Computational Complexity

▪ Dealing with multiple inputs

▪ Exercises

Recursion

▪ Guess a number

▪ Binary search

▪ Computational complexity

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Poll 1

I’m thinking of a number between 1 and 64. After each guess,
I’ll tell you if you’re correct or if my number is higher or lower.

What is the maximum number of guesses you’ll need to play
this game?

A: 6

B: 7

C: 32

D: 64

Guess a Number

I’m thinking of a number between 1 and N. After each guess,
I’ll tell you if you’re correct or if my number is higher or lower.

What is the maximum number of guesses you’ll need to play
this game?

𝑁 10 100 1000 10K 100K 1M 10M 100M

log2 𝑁 3.3 6.6 10.0 13.3 16.6 19.9 23.3 26.6

log2𝑁 + 1 4 7 11 14 17 20 24 27

Classic CS problem:
Searching

Imagine storing sorted data in an array

How long does it take us to find a number
we are looking for?

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Imagine storing sorted data in an array

How long does it take us to find a number
we are looking for?

If you start at the front and proceed
forward, each item you examine rules out
1 item

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Imagine storing sorted data in an array

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

If instead we jump right to the middle, one
of three things can happen:

A. The middle one happens to be the number
we were looking for, yay!

B. We realize we went too far

C. We realize we didn’t go far enough

Ruling out HALF the options in one step is so
much faster than only ruling out one!

Imagine storing sorted data in an array

If instead we jump right to the middle, one
of three things can happen:

A. The middle one happens to be the number
we were looking for, yay!

B. We realize we went too far

C. We realize we didn’t go far enough

Ruling out HALF the options in one step is so
much faster than only ruling out one!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Let’s say the answer was C, “we didn’t go far
enough”

We ruled out the entire first half, and now only
have the second half to search

We could start at the front of the second half and
proceed forward…

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Let’s say the answer was C, “we didn’t go far
enough”

We ruled out the entire first half, and now only
have the second half to search

We could start at the front of the second half and
proceed forward…but why do that when we
know we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Let’s say the answer was C, “we didn’t go far
enough”

We ruled out the entire first half, and now only
have the second half to search

We could start at the front of the second half and
proceed forward…but why do that when we
know we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

RECURSION
!!

Binary search

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Binary search
bool binarySearch(list data, int key) {

return binarySearch2(data, key, 0, len(data)-1);

}

bool binarySearch2(list data, int key, int first, int last) {

// TODO base case

int mid = (first + last) // 2;

if (data[mid] == key)

return true;

else if (data[mid] > key)

return binarySearch2(data, key, first, mid-1);

else

return binarySearch2(data, key, mid+1, last)

}

What would be a good base case for our Binary Search
function?

Select all that apply

A. Only three items remain: save yourself an
unnecessary function call that would trivially divide
them into halves of size 1, and just check all three.

B. Only two items remain: can’t divide into two halves
with a middle, so just check the two.

C. Only one item remains: just check it.

D. No items remain: obviously we didn’t find it.

Poll 2

Slide credit: http://www.peerinstruction4cs.org/2013/07/13/cs2-in-c-peer-instruction-materials/

Poll 3

What is the time complexity of binary search?

A: O(1)

B: O(N)

C: O(N/2)

D: O(log N)

E: None of the above

Plotting log functions
Notebook

Plan
Computational Complexity

▪ Dealing with multiple inputs

▪ Exercises

Recursion

▪ Guess a number

▪ Binary search

▪ Computational complexity O(log n)

▪ Recursion

▪ Practical considerations

▪ Proof by induction

Factorial

Complete the recursive function for factorial!

Note: A recursive function calls itself

def factorial(int n):

if ___________:

return ___________

return ___________________

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

Recursion

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html

Template

def recursiveFunction():

if (this is the base case):

do something non-recursive

else:

do something recursive

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html

