
10-607
Computational
Foundations for
Machine Learning

Perceptron Mistake
Bound &
Computational
Complexity

Instructor: Pat Virtue

Plan
Perceptron Algorithm

Perceptron Mistake Bound Theory

▪ Background: projections, distances, and margin

▪ Proof of mistake bound as an example application

Computational Complexity

▪ How fast is your code/algorithm?

▪ Counting operations

▪ Big-O

▪ Complexity classes

Perceptron Algorithm
Sketch of algorithm

Initialize 𝒘 = 𝟎

Loop

Given a point 𝒙 predict ො𝑦 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙

Given actual label 𝑦:

If 𝑦 ≠ ො𝑦

If 𝑦 = +1, 𝒘 ← 𝒘+ 𝒙

If 𝑦 = −1, 𝒘 ← 𝒘− 𝒙

Perceptron Algorithm: Example

Example: −1,2 −

-
+
+

𝑤1 = (0,0)

𝑤2 = 𝑤1 − −1,2 = (1, −2)

𝑤3 = 𝑤2 + 1,1 = (2, −1)

𝑤4 = 𝑤3 − −1,−2 = (3,1)

+
-

-
Perceptron Algorithm: (without the bias term)

▪ Set t=1, start with all-zeroes weight vector 𝑤1.

▪ Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0.

▪ On a mistake, update as follows:

• Mistake on positive, update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

1,0 +

1,1 +

−1,0 −

−1,−2 −

1, −1 +

X


X


X



Slide credit: CMU MLD Nina Balcan

Intercept Term
Q: Why do we need an intercept
term?

A: It shifts the decision boundary
off the origin

5

w

b < 0

b = 0

b > 0

Q: What should happen to b
during the perceptron algorithm

A: Two cases

1. Increasing b shifts the decision
boundary towards the
negative side

2. Decreasing b shifts the
decision boundary towards the
positive side

Slide credit: CMU MLD Matt Gormley

Perceptron Algorithm
Sketch of algorithm

Initialize 𝒘 = 𝟎

Loop

Given a point 𝒙 predict ො𝑦 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙

Given actual label 𝑦:

If true 𝑦 ≠ ො𝑦

If true 𝑦 = +1, 𝒘 ← 𝒘+ 𝒙

If true 𝑦 = −1, 𝒘 ← 𝒘− 𝒙

Perceptron Algorithm
Sketch of algorithm

Initialize 𝜽 = 𝟎

Loop

Given a point 𝒙 predict ො𝑦 = 𝑠𝑖𝑔𝑛 𝜽𝑇𝒙

Given actual label 𝑦:

If true 𝑦 ≠ ො𝑦

If true 𝑦 = +1, 𝜽 ← 𝜽 + 𝒙

If true 𝑦 = −1, 𝜽 ← 𝜽 − 𝒙

Perceptron Algorithm

8

Learning for Perceptron if we have a fixed training dataset, D.

Slide credit: CMU MLD Matt Gormley

Perceptron Algorithm

9

Learning for Perceptron if we have a fixed training dataset, D.

Implementation Trick: same
behavior as our “add on

positive mistake and
subtract on negative

mistake” version, because
y(i) takes care of the sign

Slide credit: CMU MLD Matt Gormley

Plan
Perceptron Algorithm

Perceptron Mistake Bound Theory

▪ Background: projections, distances, and margin

▪ Proof of mistake bound as an example application

Computational Complexity

▪ How fast is your code/algorithm?

▪ Counting operations

▪ Big-O

▪ Complexity classes

Projection
Projection of 𝐮 on to 𝐯

Geometric Margin
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance
from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

𝑥1
w

Margin of positive example 𝑥1

𝑥2

Margin of negative example 𝑥2

Slide credit: CMU MLD Nina Balcan

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear

separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

+

+
+

+
+

+

-

-
-

-

-

𝛾𝑤

𝛾𝑤

+

--

-
-

+

w

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance
from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

Slide credit: CMU MLD Nina Balcan

+
+

+
+-

-
-

-

-

𝛾
𝛾

+

--

-
-

w

Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum 𝛾𝑤
over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear

separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance
from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

Slide credit: CMU MLD Nina Balcan

Geometric Margin
What is the margin for this dataset?

Linear Separability

16

Def: For a binary classification problem, a set of examples 𝑆
is linearly separable if there exists a linear decision boundary
that can separate the points

+
+-

Case 1:

+ +
-

Case 2:

+
++

Case 3:

+
+-
-

Case 4:

Slide credit: CMU MLD Matt Gormley

ANALYSIS OF PERCEPTRON

17

Analysis: Perceptron

18

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-




-
-

-

-

+

R

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 N
in

a
B

al
ca

n
an

d
 M

at
t

G
o

rm
le

y

Analysis: Perceptron

19

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-




-
-

-

-

+

R

Def: We say that the perceptron algorithm has converged
if it stops making mistakes on the training data (perfectly
classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps. S

lid
e

 c
re

d
it

: C
M

U
 M

LD
 N

in
a

B
al

ca
n

an
d

 M
at

t
G

o
rm

le
y

Analysis: Perceptron

20

Perceptron Mistake Bound

++

+
+

+

+

+

-

-

-

-

-





-
-

-

-

+

R

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 N
in

a
B

al
ca

n
an

d
 M

at
t

G
o

rm
le

y

Analysis: Perceptron

21

Perceptron Mistake Bound

++

+
+

+

+

+

-

-

-

-

-





-
-

-

-

+

R

Common
Misunderstanding:

The radius is
centered at the

origin, not at the
center of the

points.

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 N
in

a
B

al
ca

n
an

d
 M

at
t

G
o

rm
le

y

Analysis: Perceptron

22

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 N
in

a
B

al
ca

n
an

d
 M

at
t

G
o

rm
le

y

Analysis: Perceptron

23

++

+
+

+

+

+

-

-

-

-

-





-
-

-

-

+

R

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 N
in

a
B

al
ca

n
an

d
 M

at
t

G
o

rm
le

y

Analysis: Perceptron

24

Proof of Perceptron Mistake Bound:
Part 1: for some A,

Cauchy-Schwartz inequality S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Analysis: Perceptron

25

Proof of Perceptron Mistake Bound:
Part 2: for some B,

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Analysis: Perceptron

26

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

The total number of mistakes
must be less than this

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Plan
Perceptron Algorithm

Perceptron Mistake Bound Theory

▪ Background: projections, distances, and margin

▪ Proof of mistake bound as an example application

Computational Complexity

▪ How fast is your code/algorithm?

▪ Counting operations

▪ Big-O

▪ Complexity classes

How fast is this code?

15 int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20 return i;

21 }

22 }

23 return -1;

24 }

Slide credit: CMU 15-122

How fast is this code?

Slide credit: CMU 15-122

Need a better way to measure
Permanent

▪ Independent of hardware or other running processes, etc.

General

▪ Applicable to a large class of programs/algorithms/problems

▪ Resources: time, space

Mathematically rigorous

Useful

▪ Not for actual run time,

▪ But help us select best algorithm for the task

Slide credit: CMU 15-122

How many statements are executed?

15 int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20 return i;

21 }

22 }

23 return -1;

24 }

If x is not in A…
how times are these
statements executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

Slide credit: CMU 15-122

How many operations are executed?

15 int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20 return i;

21 }

22 }

23 return -1;

24 }

If x is not in A…
how times operations are
executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

Slide credit: CMU 15-122

How many operations are executed?
How many program operations
are required to compute:

▪ L2 norm of vector

▪ Vector dot product

▪ Frobenius norm of matrix

▪ Matrix-vector multiplication

▪ Matrix-matrix multiplication

Operations:

▪ Arithmetic operations (e.g. + or **)

▪ Logical operations (e.g., and)

▪ Comparison operations (e.g., <=)

▪ Structure accessing operations (e.g.
array indexing like A[i])

▪ Simple assignment such as copying a
value into a variable

▪ Calls to library functions that don’t
depend on size of input (e.g., print)

▪ Control Statements (e.g. if X>5)

Be careful with function calls that
scale with the size of the input

def norm(a):

ss=0

for i in range(len(a)):

ss = ss + a[i]*a[i]

norm = np.sqrt(ss)

return norm

