10-607
Computational
Foundations for
Machine Learning

Perceptron Mistake
Bound &
Computational
Complexity

Instructor: Pat Virtue

Plan

Perceptron Algorithm

Perceptron Mistake Bound Theory
= Background: projections, distances, and margin
" Proof of mistake bound as an example application

Computational Complexity

= How fast is your code/algorithm?
= Counting operations

= Big-O

= Complexity classes

Perceptron Algorithm
Sketch of algorithm ZO]

Initialize w = 0 e~ Lo
Loop
Given a point x predict = sign(w’ x)
Given actual label y:
fy+79y
fy=+4+1, wew+
fy=—-1, wew-—

X
f
+
- + > X
\ Gl
+

Perceptron Algorithm: Example

Example: (-1,2) - X

(1,0) + \\;\“:_
(L) + X
(=1,0) -
(-1,-2)— X
(1,-1+
Perceptron Algorithm: (without the bias term) Wy :\ (0,0)

m Set t=1, start with all-zeroes weight vector w;.
’ & ! Wy = Wy — (-1,2) = (1,-2)

ws =w, +(1,1) = (2,—1)

= Given example x, predict positive iff w, - x > 0.
= On amistake, update as follows:
e Mistake on positive, update wy,; < wy + x wy =ws —(=1,-2) = (3,1)
e Mistake on negative, update w;,; « w; — x

Slide credit: CMU MLD Nina Balcan

Intercept Term

Slide credit: CMU MLD Matt Gormley

Q: Why do we need an intercept
term?

A: It shifts the decision boundary
off the origin

Q: What should happentob
during the perceptron algorithm

A: Two cases

1. Increasing b shifts the decision
boundary towards the
negative side

2. Decreasing b shifts the
decision boundary towards the
positive side

Perceptron Algorithm
Sketch of algorithm

Initializew = 0
Loop
Given a point x predict = sign(w’ x)
Given actual label y:
Iftruey =79y
Iftruey =41, wew+x
Iftruey =-1, wew-—x

Perceptron Algorithm

Sketch of algorithm
Initialize @ = 0
Loop
Given a point x predict = sign(0” x)
Given actual label y:
Iftruey =79y
Iftruey =+1, 0 <0 +x
Iftruey=-1, 0 <0 —x

Perceptron Algorithm

Learning for Perceptron if we have a fixed training dataset, D.

Algorithm 1 Perceptron Learning Algorithm

i: procedure PERCEPTRON(D = {(x1), y(), ..., (xV) (V))])
2 00 >h " " arameters
3 while not converged do

4 fori € {1,2,..., N} do > For each example
5: § « sign(@'x®) > Predict
6

7

8

if § # y(®) then > If mistake
0 — 0+ yWx(® > Update parameters

return 0

Perceptron Algorithm

Learning for Perceptron if we have a fixed training dataset, D.

Algorithm 1 Perceptron Learning Algorithm
procedure PERCEPTRON(D = {(x1), yW)), ... (xV) (N1

1.

2 0«0 > 7" " arameters

3 while not converged do

4 fori € {1,2,..., N} do > For each example

5: § « sign(@'x®) > Predict

6 if § # y(®) then > If mistake

7 0 6 +yx" Implementation Trick: same

8 return 6 % behavior as our “add on
positive mistake and

subtract on negative
mistake” version, because
y(® takes care of the sign

Plan

Perceptron Mistake Bound Theory
" Background: projections, distances, and margin
" Proof of mistake bound as an example application

Projection

Projectionof uontov

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance
from x to the plane w - x = 0 (or the negative if on wrong side)

Margin of positive example x4

Margin of negative example x,

Slide credit: CMU MLD Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance
from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Slide credit: CMU MLD Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance
from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide credit: CMU MLD Nina Balcan

Geometric Margin
What is the margin for this dataset?

Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points

Slide credit: CMU MLD Matt Gormley

ANALYSIS OF PERCEPTRON

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/~v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide credit: CMU MLD Nina Balcan and Matt Gormley

Analysis: Perceptron

Perceptron Mistake Bound
Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/~v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

— —
- e B

//\ \ \\
Def: We say that the perceptron algorithm has converged
if it stops making mistakes on the training data (perfectly
classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

e - = ™

As|wuon 13e | pue uedjeg eUIN QTN NWD HPad 8plS

C
O
-
)
Q.
)
9
-
)
al
wn
=
O
C
<

Common

Analysis: Percept Misunderstanding:

: The radius is
Perceptron Mistake Boun centered at the

Theorem 0.1 (Block (1962), Novikoff (14 origin, not at the
Given dataset: D = {(x(¥), 3} ¥ center of the

1. Finite size inputs: ||2()|| < R
2. Linearly separable data: 30" s.t. ||0*|| = 1 and
y (0" - x()) > 4, Vi
Then: The number of mistakes made by the Perceptron

o =

algorithm on this dataset is PN

k< (R/v)?

A3|wioD 1.\ pue uedjeg BUIN dTIA NIAID HP3Jd 3pIIS

o~
o~

C
O
-
)
Q.
)
9
-
)
al
wn
=
O
C
<

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x),)1V .

Suppose:
1. Finite size inputs: ||z(V|| < R
2. Linearly separable data: 30 s.t. ||@*|| = 1 and

Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)’

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x(1), y(1)), (x) 4(2)) .. .})

2 0—0,k=1 > Initialize parameters
3 foric {1,2,...} do > For each example
4 if (0 (0% . x()) < 0 then > If mistake
5 k+D) o gk) 4 (D)% (@) > Update parameters
6 k< k+1
7 return 0

ASjwioD e @TW NWD HPad 3pIs o

C
O
-
)
Q.
)
9
-
)
al
wn
=
O
C
<

As|uioD EW ATW NWD HPADBPIS 4,

C
O
-
)
Q.
)
9
-
)
al
wn
=
O
C
<

AS|W10D W @TW NWD SHP3D 3PIS o

C
O
-
)
Q.
)
9
-
)
al
wn
=
O
C
<

Plan

Computational Complexity

= How fast is your code/algorithm?
= Counting operations

= Big-O

= Complexity classes

15
16
17
18
19
20
21
272
23
24

How fast is this code?

int search (int x,
{
for (int 1 = 0;
{
1if (A[1] == x)

return 1i;

J

return -1;

Slide credit: CMU 15-122

int[]

1 < n;

{

A, int n)

i++)

How fast is this code?

6_

0.0 0.2 0.4 0.6 0.8
Slide credit: CMU 15-122 Input size

Need a better way to measure

Permanent

" |Independent of hardware or other running processes, etc.
General

= Applicable to a large class of programs/algorithms/problems
= Resources: time, space

Mathematically rigorous

Useful

= Not for actual run time,

" But help us select best algorithm for the task

Slide credit: CMU 15-122

15
16
17
18
19
20
21
272
23
24

How many statements are executed?

1 < n;

int search(int x, int][]
{
for (int 1 = 0;
{
if (A[1i] == x)

return 1i;

}
}

return -1;

J

Slide credit: CMU 15-122

{

A, int n)

i++)

If x is notin A...

how times are these
statements executed?

1 =0

1 < n

if (Af[1]

i++4

return -1

How many operations are executed?

15 1int search(int x, int[] A, int n)

16
17 for (int 1 = 0; 1 < n; i++4) , .
18 { If x is not in A...
19 if (A[L] == x) | how times operations are
20 return 1; executed?
21 }
23 return -1; -
1 < n
o4)
if (A[i] == x)
14+

return -1

Slide credit: CMU 15-122

How many operations are executed?

How many program operations
are required to compute:

" |2 norm of vector

= Vector dot product

" Frobenius norm of matrix

" Matrix-vector multiplication
= Matrix-matrix multiplication

def norm(a) :

ss=0

for 1 1n range(len(a)):
ss = ss + al[i]l*al1]

norm = np.sqgrt(ss)

return norm

Operations:

Arithmetic operations (e.g. + or **)
Logical operations (e.g., and)
Comparison operations (e.g., <=)

Structure accessing operations (e.g.
array indexing like A[i])

Simple assignment such as copying a
value into a variable

Calls to library functions that don’t
depend on size of input (e.g., print)

Control Statements (e.g. if X>5)

Be careful with function calls that
scale with the size of the input

