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Plan
Perceptron Algorithm

Perceptron Mistake Bound Theory

▪ Background: projections, distances, and margin

▪ Proof of mistake bound as an example application

Computational Complexity

▪ How fast is your code/algorithm?

▪ Counting operations

▪ Big-O

▪ Complexity classes



Perceptron Algorithm
Sketch of algorithm

Initialize 𝒘 = 𝟎

Loop

Given a point 𝒙 predict ො𝑦 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙

Given actual label 𝑦:

If 𝑦 ≠ ො𝑦

If 𝑦 = +1,    𝒘 ← 𝒘+ 𝒙

If 𝑦 = −1,    𝒘 ← 𝒘− 𝒙



Perceptron Algorithm: Example

Example: −1,2 −

-
+
+

𝑤1 = (0,0)

𝑤2 = 𝑤1 − −1,2 = (1, −2)

𝑤3 = 𝑤2 + 1,1 = (2, −1)

𝑤4 = 𝑤3 − −1,−2 = (3,1)

+
-

-
Perceptron Algorithm: (without the bias term)

▪ Set t=1, start with all-zeroes weight vector 𝑤1.

▪ Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0.

▪ On a mistake, update as follows: 

• Mistake on positive, update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥
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Slide credit: CMU MLD Nina Balcan



Intercept Term
Q: Why do we need an intercept 
term?

A: It shifts the decision boundary 
off the origin

5

w

b < 0

b = 0

b > 0

Q: What should happen to b 
during the perceptron algorithm

A: Two cases

1. Increasing b shifts the decision 
boundary towards the 
negative side

2. Decreasing b shifts the 
decision boundary towards the 
positive side

Slide credit: CMU MLD Matt Gormley



Perceptron Algorithm
Sketch of algorithm

Initialize 𝒘 = 𝟎

Loop

Given a point 𝒙 predict ො𝑦 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙

Given actual label 𝑦:

If true 𝑦 ≠ ො𝑦

If true 𝑦 = +1,    𝒘 ← 𝒘+ 𝒙

If true 𝑦 = −1,    𝒘 ← 𝒘− 𝒙



Perceptron Algorithm
Sketch of algorithm

Initialize 𝜽 = 𝟎

Loop

Given a point 𝒙 predict ො𝑦 = 𝑠𝑖𝑔𝑛 𝜽𝑇𝒙

Given actual label 𝑦:

If true 𝑦 ≠ ො𝑦

If true 𝑦 = +1,    𝜽 ← 𝜽 + 𝒙

If true 𝑦 = −1,    𝜽 ← 𝜽 − 𝒙



Perceptron Algorithm

8

Learning for Perceptron if we have a fixed training dataset, D. 

Slide credit: CMU MLD Matt Gormley



Perceptron Algorithm

9

Learning for Perceptron if we have a fixed training dataset, D. 

Implementation Trick: same 
behavior as our “add on 

positive mistake and 
subtract on negative 

mistake” version, because 
y(i) takes care of the sign

Slide credit: CMU MLD Matt Gormley



Plan
Perceptron Algorithm

Perceptron Mistake Bound Theory

▪ Background: projections, distances, and margin

▪ Proof of mistake bound as an example application

Computational Complexity

▪ How fast is your code/algorithm?

▪ Counting operations

▪ Big-O

▪ Complexity classes



Projection
Projection of 𝐮 on to 𝐯



Geometric Margin
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance 
from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

𝑥1
w

Margin of positive example 𝑥1

𝑥2

Margin of negative example 𝑥2

Slide credit: CMU MLD Nina Balcan



Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear 

separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.
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Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance 
from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

Slide credit: CMU MLD Nina Balcan
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Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum 𝛾𝑤
over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear 

separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the distance 
from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side)

Slide credit: CMU MLD Nina Balcan



Geometric Margin
What is the margin for this dataset?



Linear Separability

16

Def: For a binary classification problem, a set of examples 𝑆
is linearly separable if there exists a linear decision boundary 
that can separate the points

+
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Case 1:

+ +
-

Case 2:

+
++

Case 3:
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Case 4:

Slide credit: CMU MLD Matt Gormley



ANALYSIS OF PERCEPTRON

17



Analysis: Perceptron
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(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
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Analysis: Perceptron
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(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound
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Def: We say that the perceptron algorithm has converged
if it stops making mistakes on the training data (perfectly 
classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps. S

lid
e

 c
re

d
it

: C
M

U
 M

LD
 N

in
a 

B
al

ca
n

an
d

 M
at

t 
G

o
rm

le
y



Analysis: Perceptron
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Perceptron Mistake Bound
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Analysis: Perceptron
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Perceptron Mistake Bound
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Common 
Misunderstanding:

The radius is 
centered at the 

origin, not at the 
center of the 

points.
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Analysis: Perceptron
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Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.
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Analysis: Perceptron
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Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 1: for some A, 

Cauchy-Schwartz inequality S
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Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 2: for some B, 
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Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

The total number of mistakes 
must be less than this
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Plan
Perceptron Algorithm

Perceptron Mistake Bound Theory

▪ Background: projections, distances, and margin

▪ Proof of mistake bound as an example application

Computational Complexity

▪ How fast is your code/algorithm?

▪ Counting operations

▪ Big-O

▪ Complexity classes



How fast is this code?

15  int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20        return i;

21  }

22 }

23 return -1;

24 }

Slide credit: CMU 15-122



How fast is this code?

Slide credit: CMU 15-122



Need a better way to measure
Permanent

▪ Independent of hardware or other running processes, etc.

General

▪ Applicable to a large class of programs/algorithms/problems

▪ Resources: time, space

Mathematically rigorous

Useful

▪ Not for actual run time,

▪ But help us select best algorithm for the task

Slide credit: CMU 15-122



How many statements are executed?

15  int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20        return i;

21  }

22 }

23 return -1;

24 }

If x is not in A…
how times are these 
statements executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

Slide credit: CMU 15-122



How many operations are executed?

15  int search(int x, int[] A, int n)

16 {

17 for (int i = 0; i < n; i++)

18 {

19 if (A[i] == x) {

20        return i;

21  }

22 }

23 return -1;

24 }

If x is not in A…
how times operations are 
executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

Slide credit: CMU 15-122



How many operations are executed?
How many program operations
are required to compute:

▪ L2 norm of vector

▪ Vector dot product

▪ Frobenius norm of matrix

▪ Matrix-vector multiplication

▪ Matrix-matrix multiplication

Operations:

▪ Arithmetic operations (e.g. + or **)

▪ Logical operations (e.g., and)

▪ Comparison operations (e.g., <=)

▪ Structure accessing operations (e.g.
array indexing like A[i])

▪ Simple assignment such as copying a 
value into a variable

▪ Calls to library functions that don’t 
depend on size of input (e.g., print)

▪ Control Statements (e.g. if X>5)

Be careful with function calls that 
scale with the size of the input

def norm(a):

ss=0

for i in range(len(a)):

ss = ss + a[i]*a[i]

norm = np.sqrt(ss)

return norm


