

10-607 Computational Foundations for Machine Learning

Perceptron Mistake Bound & Computational Complexity

Instructor: Pat Virtue

Plan

Perceptron Algorithm

Perceptron Mistake Bound Theory

- Background: projections, distances, and margin
- Proof of mistake bound as an example application

Computational Complexity

- How fast is your code/algorithm?
- Counting operations
- Big-O
- Complexity classes

Perceptron Algorithm

Sketch of algorithm

Initialize $w = 0$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Loop

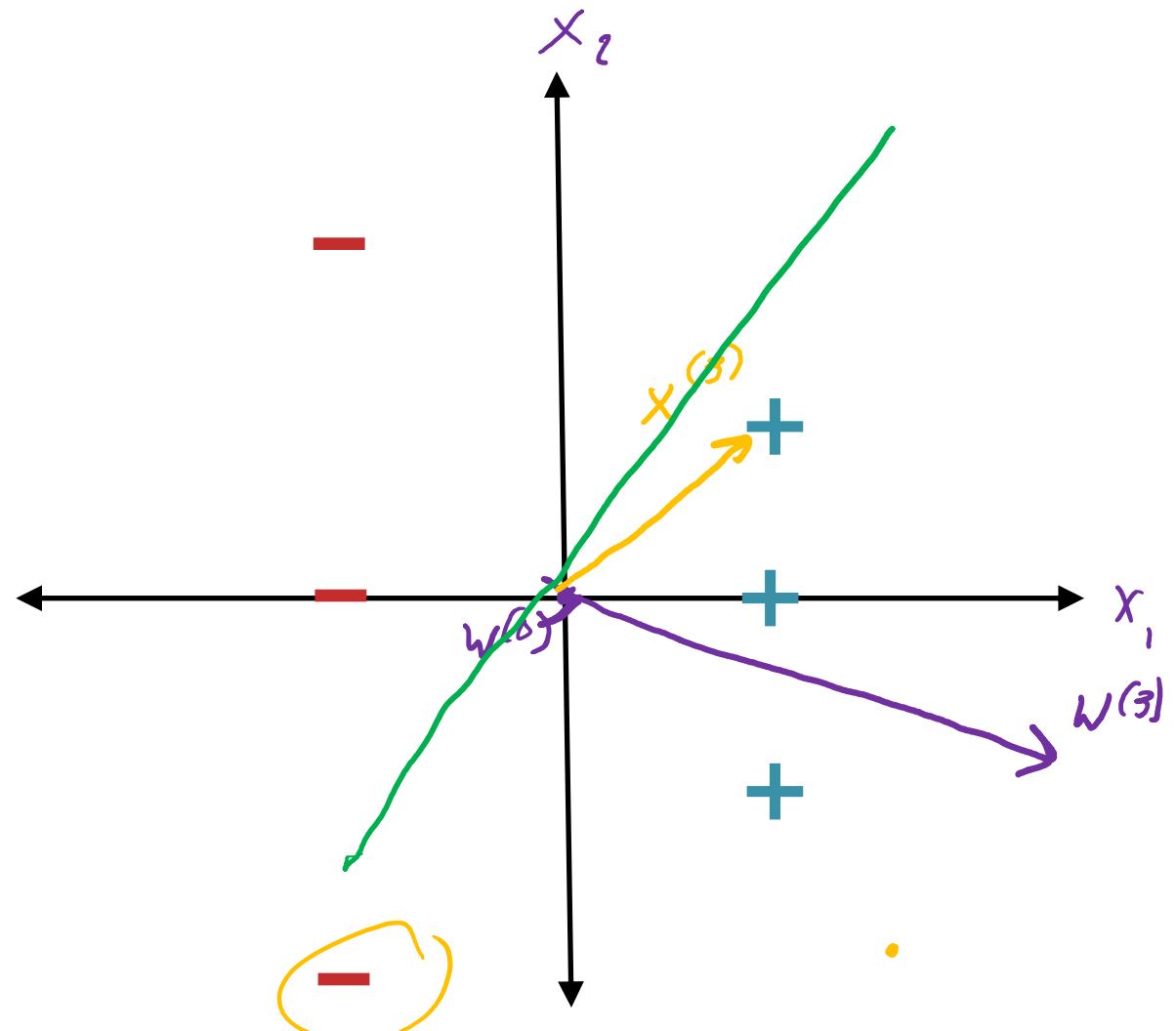
Given a point x predict $\hat{y} = \text{sign}(w^T x)$

Given actual label y :

If $y \neq \hat{y}$

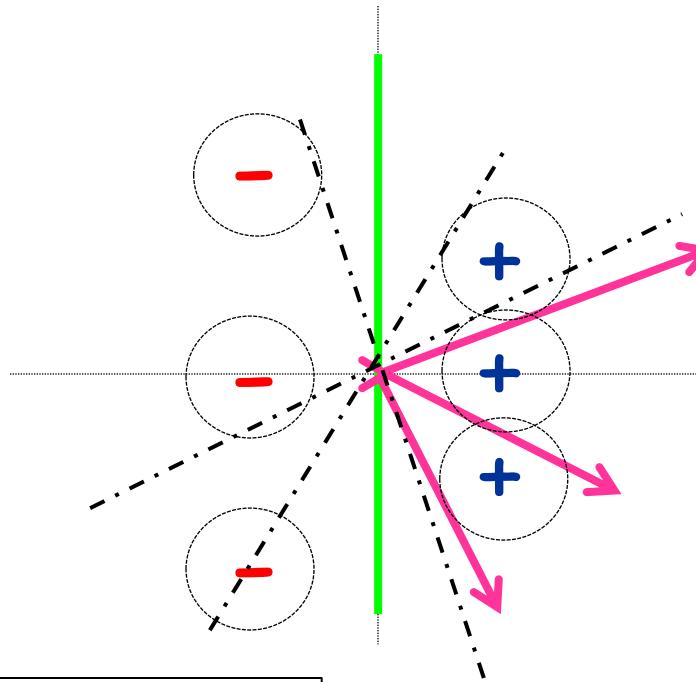
→ If $y = +1$, $w \leftarrow w + x$

If $y = -1$, $w \leftarrow w - x$



Perceptron Algorithm: Example

Example: $(-1,2) - \text{X}$
 $(1,0) + \checkmark$
 $(1,1) + \text{X}$
 $(-1,0) - \checkmark$
 $(-1,-2) - \text{X}$
 $(1,-1) + \checkmark$



Perceptron Algorithm: (without the bias term)

- Set $t=1$, start with all-zeroes weight vector w_1 .
- Given example x , predict positive iff $w_t \cdot x \geq 0$.
- On a mistake, update as follows:
 - Mistake on positive, update $w_{t+1} \leftarrow w_t + x$
 - Mistake on negative, update $w_{t+1} \leftarrow w_t - x$

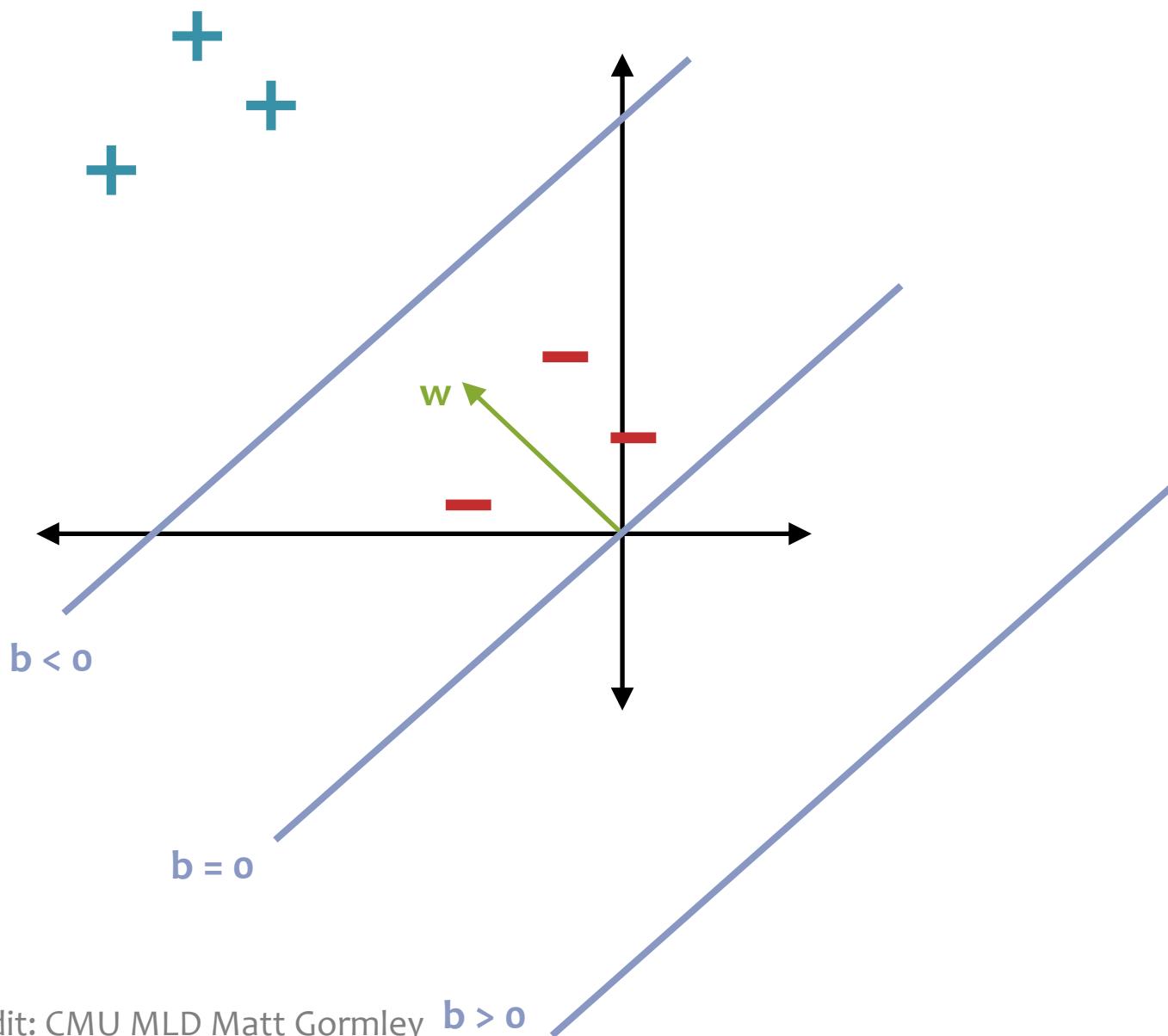
$$w_1 = (0,0)$$

$$w_2 = w_1 - (-1,2) = (1,-2)$$

$$w_3 = w_2 + (1,1) = (2,-1)$$

$$w_4 = w_3 - (-1,-2) = (3,1)$$

Intercept Term



Q: Why do we need an intercept term?

A: It shifts the decision boundary off the origin

Q: What should happen to b during the perceptron algorithm

A: Two cases

1. Increasing b shifts the decision boundary towards the negative side
2. Decreasing b shifts the decision boundary towards the positive side

Perceptron Algorithm

Sketch of algorithm

Initialize $\mathbf{w} = \mathbf{0}$

Loop

Given a point \mathbf{x} predict $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x})$

Given actual label y :

If true $y \neq \hat{y}$

If true $y = +1$, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}$

If true $y = -1$, $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x}$

Perceptron Algorithm

Sketch of algorithm

Initialize $\theta = 0$

Loop

Given a point x predict $\hat{y} = \text{sign}(\theta^T x)$

Given actual label y :

If true $y \neq \hat{y}$

If true $y = +1$, $\theta \leftarrow \theta + x$

If true $y = -1$, $\theta \leftarrow \theta - x$

Perceptron Algorithm

Learning for Perceptron if we have a fixed training dataset, D .

Algorithm 1 Perceptron Learning Algorithm

```
1: procedure PERCEPTRON( $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$ )
2:    $\theta \leftarrow 0$                                       $\triangleright$  Initialize parameters
3:   while not converged do
4:     for  $i \in \{1, 2, \dots, N\}$  do            $\triangleright$  For each example
5:        $\hat{y} \leftarrow \text{sign}(\theta^T \mathbf{x}^{(i)})$             $\triangleright$  Predict
6:       if  $\hat{y} \neq y^{(i)}$  then            $\triangleright$  If mistake
7:          $\theta \leftarrow \theta + y^{(i)} \mathbf{x}^{(i)}$             $\triangleright$  Update parameters
8:   return  $\theta$ 
```

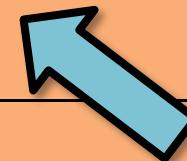
Perceptron Algorithm

Learning for Perceptron if we have a fixed training dataset, D .

Algorithm 1 Perceptron Learning Algorithm

```
1: procedure PERCEPTRON( $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$ )
2:    $\theta \leftarrow 0$                                       $\triangleright$  Initialize parameters
3:   while not converged do
4:     for  $i \in \{1, 2, \dots, N\}$  do            $\triangleright$  For each example
5:        $\hat{y} \leftarrow \text{sign}(\theta^T \mathbf{x}^{(i)})$        $\triangleright$  Predict
6:       if  $\hat{y} \neq y^{(i)}$  then                   $\triangleright$  If mistake
7:          $\theta \leftarrow \theta + y^{(i)} \mathbf{x}^{(i)}$ 
8:   return  $\theta$ 
```

Implementation Trick: same behavior as our “add on positive mistake and subtract on negative mistake” version, because $y^{(i)}$ takes care of the sign



Plan

Perceptron Algorithm

Perceptron Mistake Bound Theory

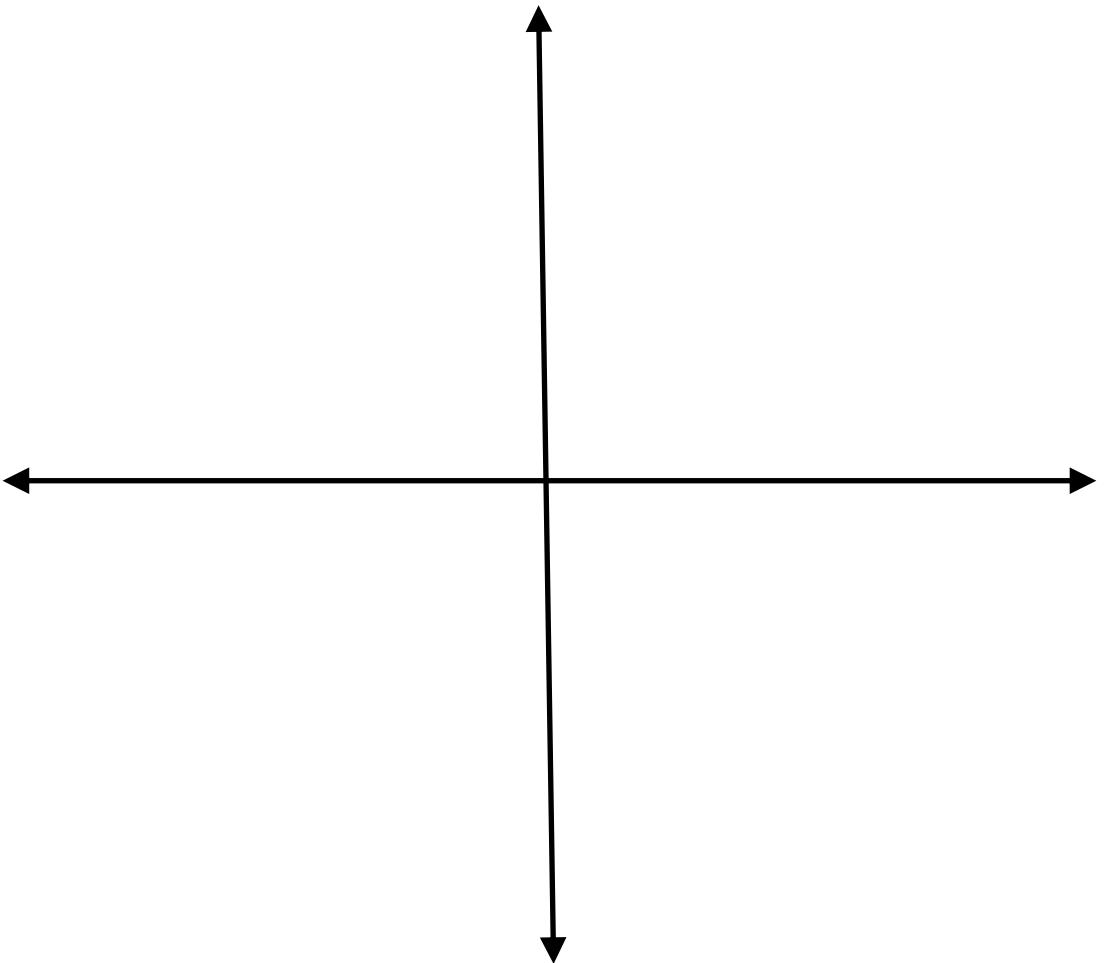
- Background: projections, distances, and margin
- Proof of mistake bound as an example application

Computational Complexity

- How fast is your code/algorithm?
- Counting operations
- Big-O
- Complexity classes

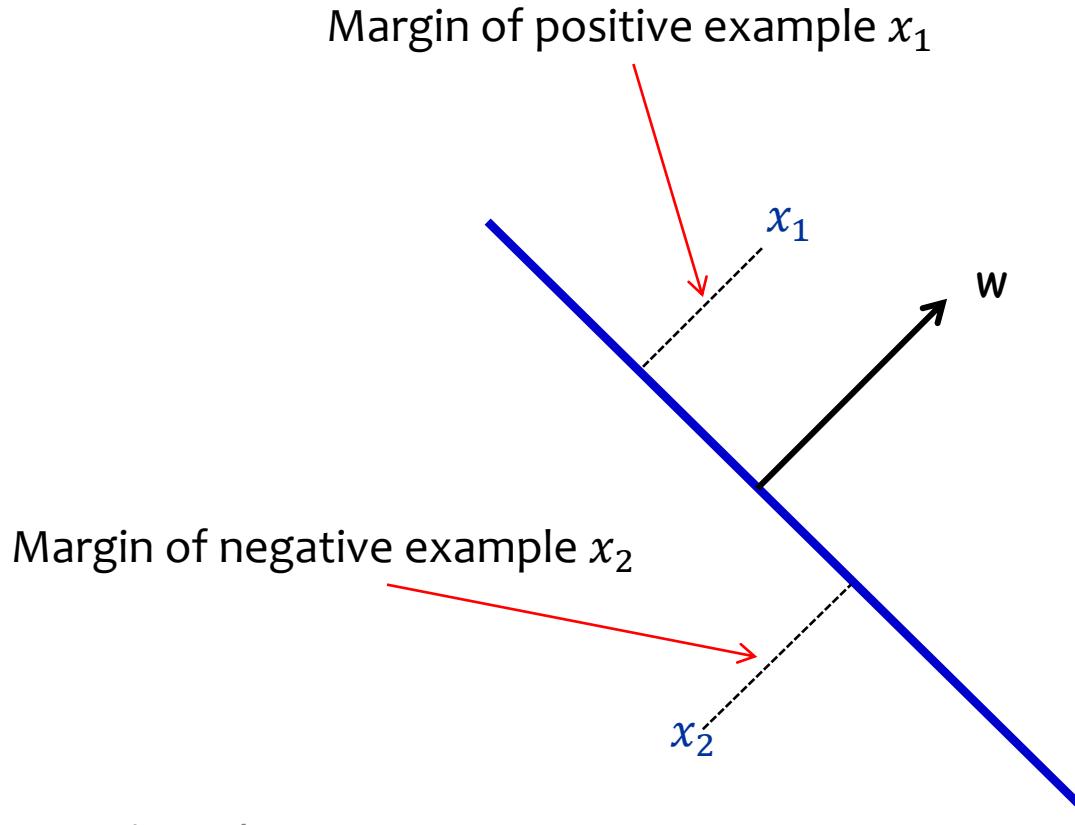
Projection

Projection of \mathbf{u} on to \mathbf{v}



Geometric Margin

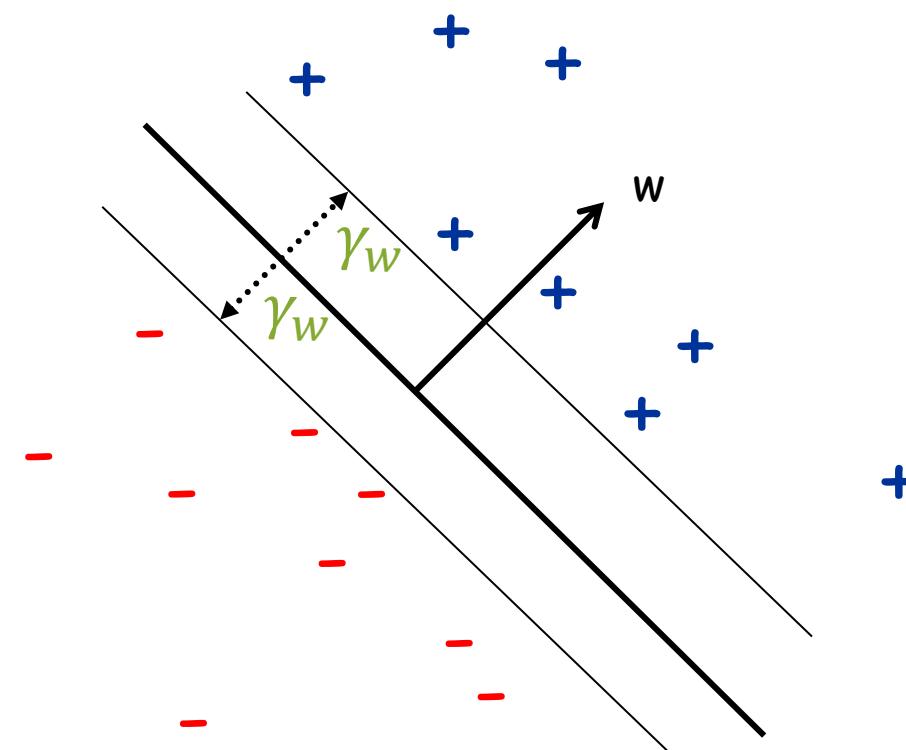
Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

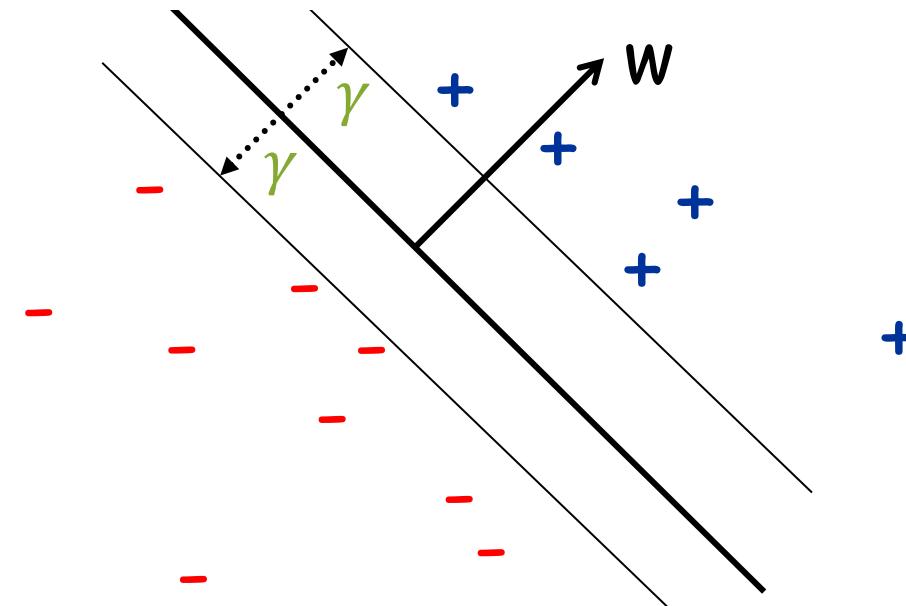


Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

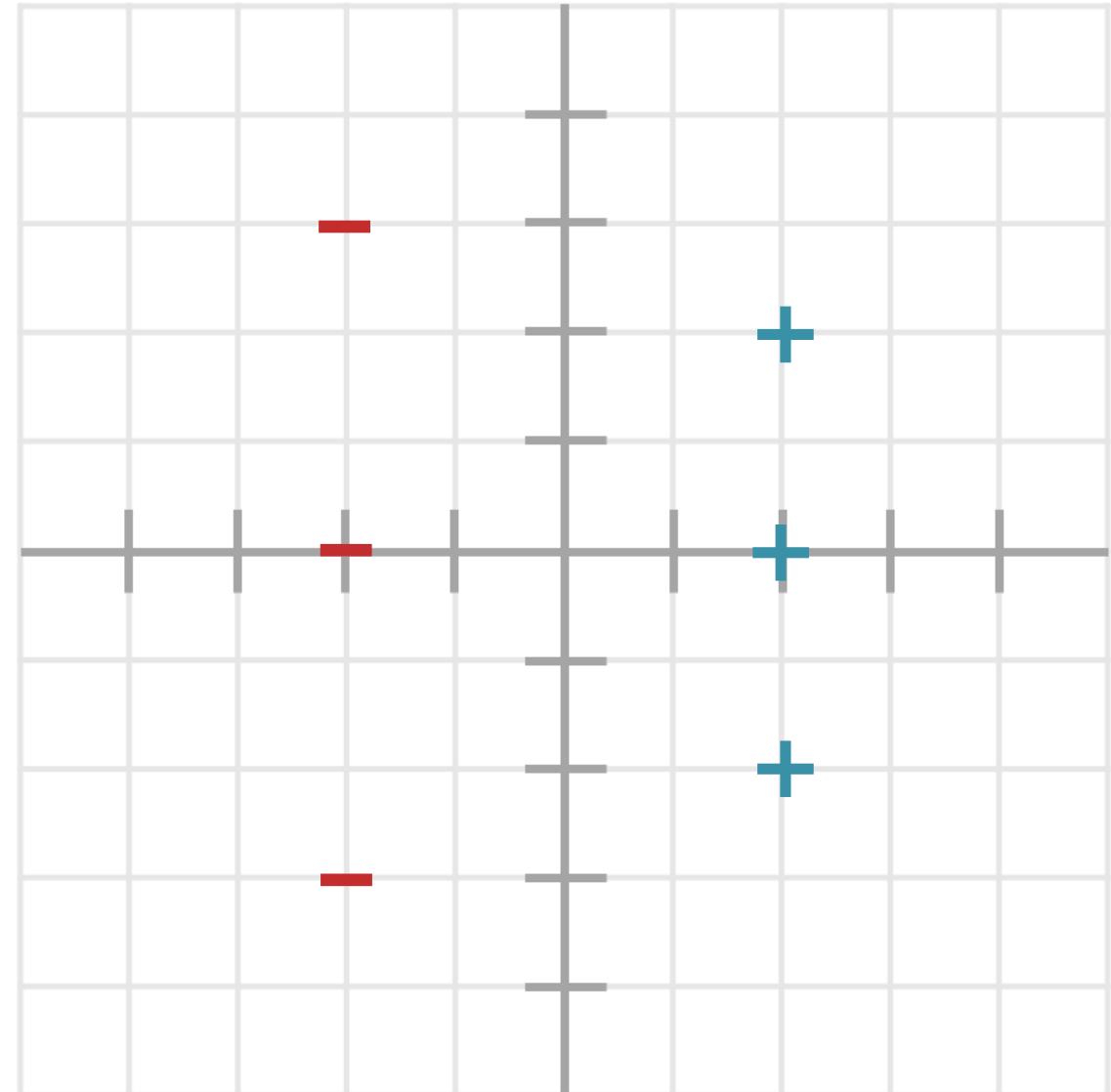
Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w .



Geometric Margin

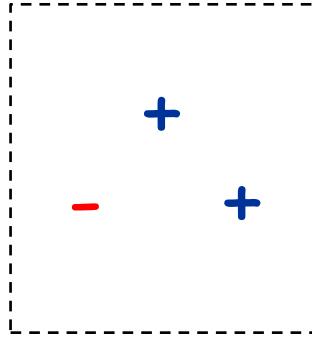
What is the margin for this dataset?



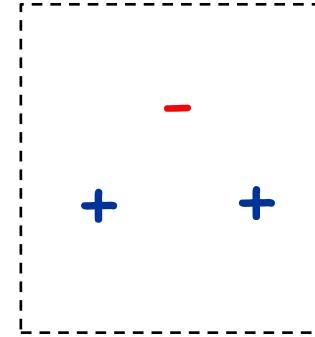
Linear Separability

Def: For a **binary classification** problem, a set of examples S is **linearly separable** if there exists a linear decision boundary that can separate the points

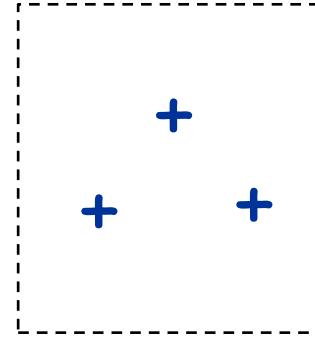
Case 1:



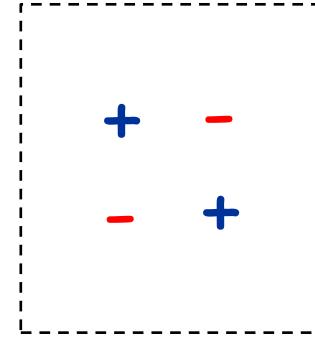
Case 2:



Case 3:



Case 4:



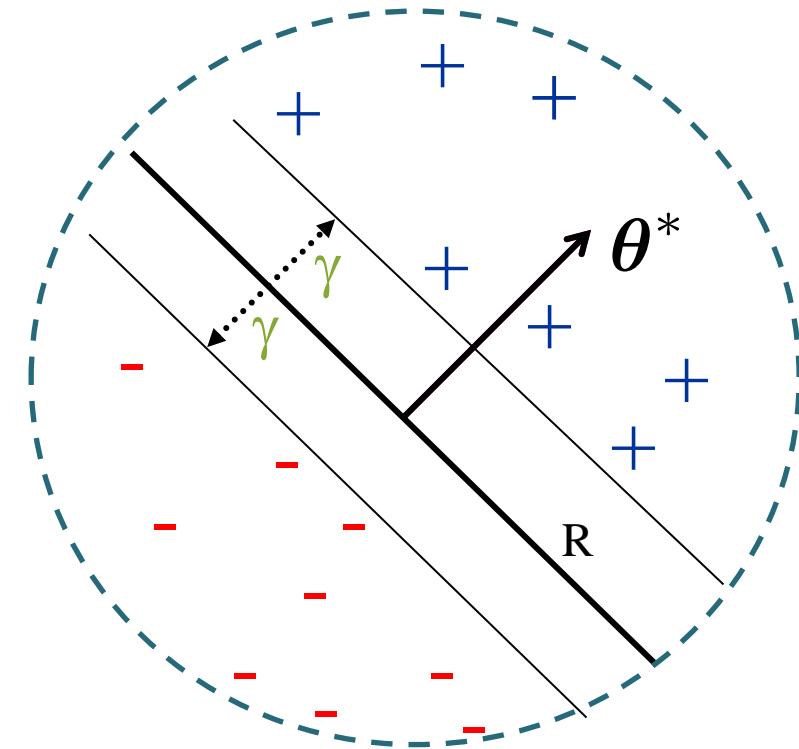
ANALYSIS OF PERCEPTRON

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R , then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

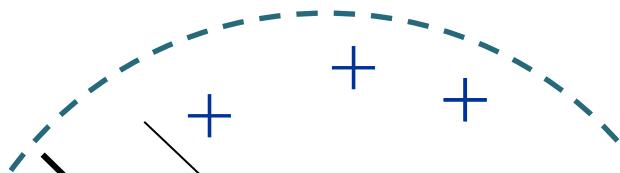


Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R , then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)



Def: We say that the perceptron algorithm has **converged** if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For **linearly separable** data, if the perceptron algorithm cycles repeatedly through the data, it will **converge** in a finite # of steps.

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

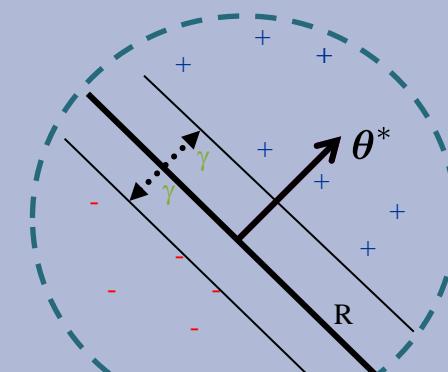
Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$.

Suppose:

1. Finite size inputs: $\|\mathbf{x}^{(i)}\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^* \text{ s.t. } \|\boldsymbol{\theta}^*\| = 1 \text{ and } y^{(i)}(\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \leq (R/\gamma)^2$$



Analysis: Perceptron

Common Misunderstanding:

The **radius** is **centered at the origin**, not at the center of the points.

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1963))

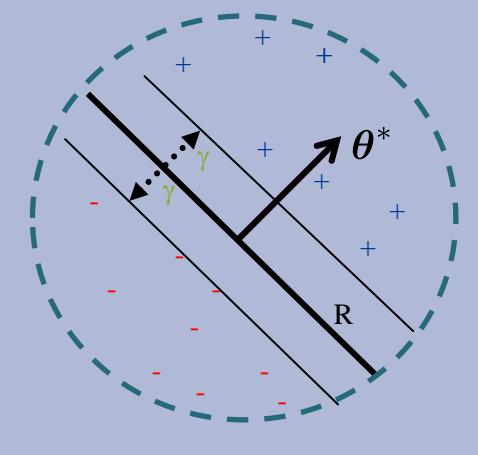
Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$

Suppose:

1. Finite size inputs: $\|\mathbf{x}^{(i)}\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^* \text{ s.t. } \|\boldsymbol{\theta}^*\| = 1 \text{ and } y^{(i)}(\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \leq (R/\gamma)^2$$

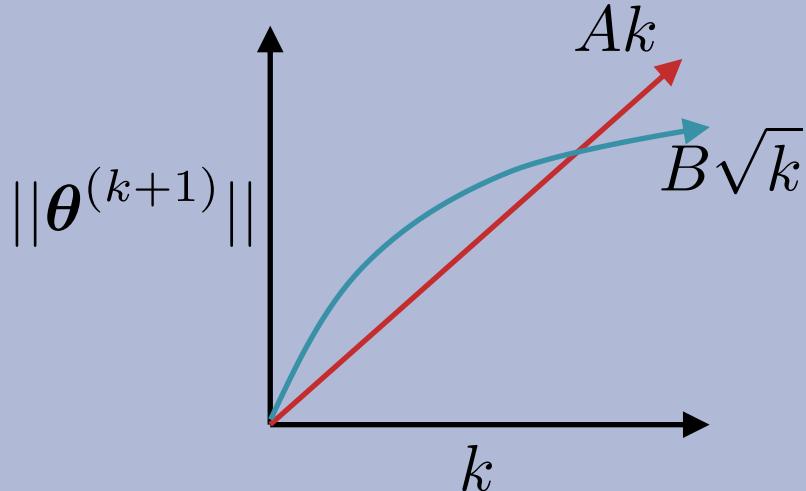


Analysis: Perceptron

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$Ak \leq \|\theta^{(k+1)}\| \leq B\sqrt{k}$$



Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).

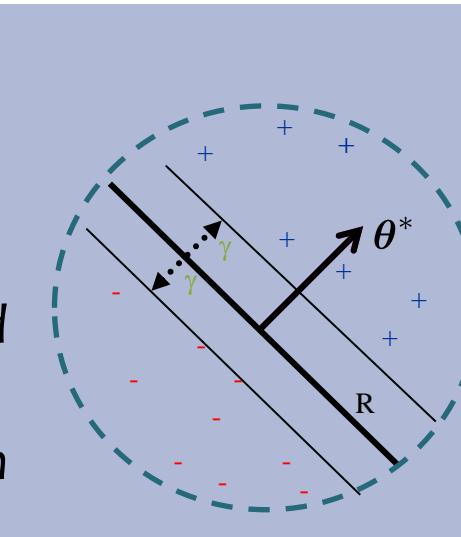
Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$.

Suppose:

1. Finite size inputs: $\|\mathbf{x}^{(i)}\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^* \text{ s.t. } \|\boldsymbol{\theta}^*\| = 1 \text{ and } y^{(i)}(\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \leq (R/\gamma)^2$$



Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure PERCEPTRON( $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots\}$ )
2:    $\boldsymbol{\theta} \leftarrow \mathbf{0}, k = 1$                                  $\triangleright$  Initialize parameters
3:   for  $i \in \{1, 2, \dots\}$  do                       $\triangleright$  For each example
4:     if  $y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$  then       $\triangleright$  If mistake
5:        $\boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}$      $\triangleright$  Update parameters
6:      $k \leftarrow k + 1$ 
7:   return  $\boldsymbol{\theta}$ 
```

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 1: for some A , $Ak \leq \|\boldsymbol{\theta}^{(k+1)}\|$

$$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$$

by Perceptron algorithm update

$$= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)} (\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$$

$$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$$

by assumption

$$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* \geq k\gamma$$

by induction on k since $\boldsymbol{\theta}^{(1)} = \mathbf{0}$

$$\Rightarrow \|\boldsymbol{\theta}^{(k+1)}\| \geq k\gamma$$

since $\|\mathbf{w}\| \times \|\mathbf{u}\| \geq \mathbf{w} \cdot \mathbf{u}$ and $\|\boldsymbol{\theta}^*\| = 1$

Cauchy-Schwartz inequality

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 2: for some B , $\|\boldsymbol{\theta}^{(k+1)}\| \leq B\sqrt{k}$

$$\|\boldsymbol{\theta}^{(k+1)}\|^2 = \|\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}\|^2$$

by Perceptron algorithm update

$$= \|\boldsymbol{\theta}^{(k)}\|^2 + (y^{(i)})^2 \|\mathbf{x}^{(i)}\|^2 + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$$

$$\leq \|\boldsymbol{\theta}^{(k)}\|^2 + (y^{(i)})^2 \|\mathbf{x}^{(i)}\|^2$$

since k th mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$

$$= \|\boldsymbol{\theta}^{(k)}\|^2 + R^2$$

since $(y^{(i)})^2 \|\mathbf{x}^{(i)}\|^2 = \|\mathbf{x}^{(i)}\|^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$

$$\Rightarrow \|\boldsymbol{\theta}^{(k+1)}\|^2 \leq kR^2$$

by induction on k since $(\boldsymbol{\theta}^{(1)})^2 = 0$

$$\Rightarrow \|\boldsymbol{\theta}^{(k+1)}\| \leq \sqrt{k}R$$

Analysis: Perceptron

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$k\gamma \leq \|\theta^{(k+1)}\| \leq \sqrt{k}R$$

$$\Rightarrow k \leq (R/\gamma)^2$$

The total number of mistakes
must be less than this

Plan

Perceptron Algorithm

Perceptron Mistake Bound Theory

- Background: projections, distances, and margin
- Proof of mistake bound as an example application

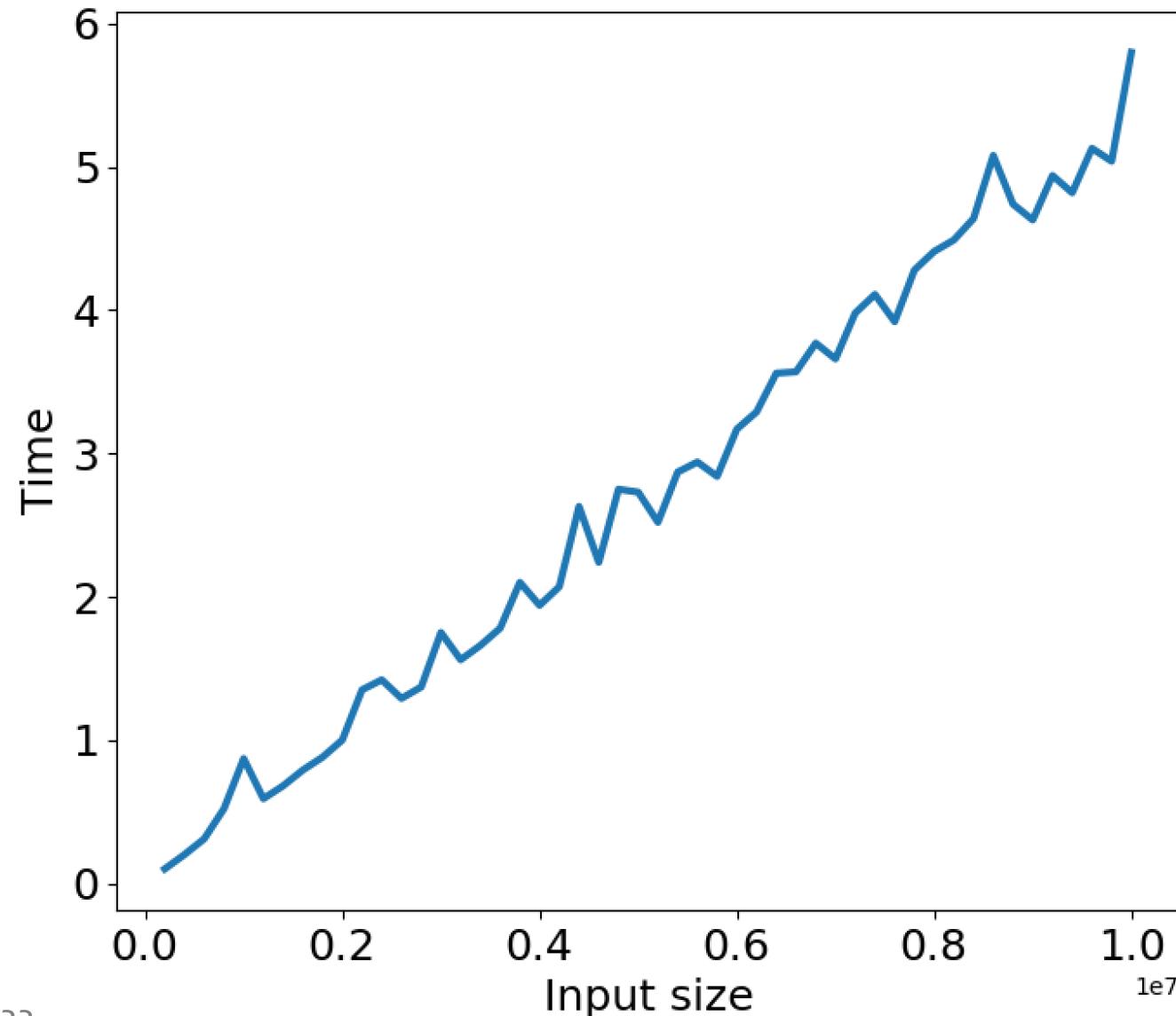
Computational Complexity

- How fast is your code/algorithm?
- Counting operations
- Big-O
- Complexity classes

How fast is this code?

```
15  int search(int x, int[] A, int n)
16  {
17      for (int i = 0; i < n; i++)
18      {
19          if (A[i] == x)  {
20              return i;
21          }
22      }
23      return -1;
24 }
```

How fast is this code?



Need a better way to measure

Permanent

- Independent of hardware or other running processes, etc.

General

- Applicable to a large class of programs/algorithms/problems
- Resources: time, space

Mathematically rigorous

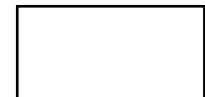
Useful

- Not for actual run time,
- But help us select best algorithm for the task

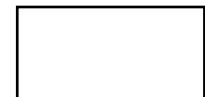
How many statements are executed?

```
15 int search(int x, int[] A, int n)
16 {
17     for (int i = 0; i < n; i++)
18     {
19         if (A[i] == x) {
20             return i;
21         }
22     }
23     return -1;
24 }
```

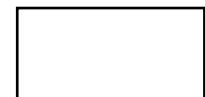
If x is not in A...
how times are these
statements executed?



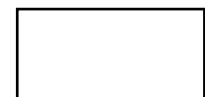
i = 0



i < n



if (A[i] == x)



i++

return -1

How many **operations** are executed?

```
15 int search(int x, int[] A, int n)
16 {
17     for (int i = 0; i < n; i++)
18     {
19         if (A[i] == x) {
20             return i;
21         }
22     }
23     return -1;
24 }
```

If x is not in A...
how times **operations** are
executed?

i = 0

i < n

if (A[i] == x)

i++

return -1

How many **operations** are executed?

How many program operations are required to compute:

- L2 norm of vector
- Vector dot product
- Frobenius norm of matrix
- Matrix-vector multiplication
- Matrix-matrix multiplication

```
def norm(a):  
    ss=0  
    for i in range(len(a)):  
        ss = ss + a[i]*a[i]  
    norm = np.sqrt(ss)  
    return norm
```

Operations:

- Arithmetic operations (e.g. + or **)
- Logical operations (e.g., and)
- Comparison operations (e.g., <=)
- Structure accessing operations (e.g. array indexing like A[i])
- Simple assignment such as copying a value into a variable
- Calls to library functions that don't depend on size of input (e.g., print)
- Control Statements (e.g. if X>5)

Be careful with function calls that scale with the size of the input