Plan

Wrap-up Overview \rightarrow Lecture 1 slides

Proof Techniques
\checkmark Proof by cases
\checkmark Disprove by counterexample

- Proof by contrapositive
- Proof by contradiction

Perceptron Algorithm

10-607
 Computational
 Foundations for Machine Learning

Proof Techniques \& Perceptron Algorithm

Instructor: Pat Virtue

Proof Techniques

Proof by cases

Disproof by counterexample

- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Proof by contrapositive

Previous Poll

Given model m: \{A: True, B: False\}
Does m satisfy the following sentence:

i. Yes

F
ii. No
iii. Not enough information
iv. Syntax error in sentence

Previous Poll

Truth table for $(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow-A)$

How many rows do we need (excluding a header)?
i. 2
ii. 4
iii. 6
iv. 8
v. 16

Previous Poll

Truth table for $(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow-A)$

How many columns should we have?
i. 2
ii. 3
iii. 4
iv. $5 \longleftarrow$
v. 6

A	B
T	T
T	F
F	T
F	F

$$
A \Rightarrow B
$$

$7 \leftarrow$

Exercise

Truth table for $(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow-A)$

Exercise

Truth table for $(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow-A)$

A	B	$\neg A$	$\neg \mathrm{~B}$	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$	$(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A)$
F	F	T	T	T	T	T
F	T	T	F	T	T	T
T	F	F	T	F	F	T
T	T	F	F	T	T	T

Proof Techniques

Proof by cases

Disproof by counterexample

- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Proof by contrapositive

- Law of contrapositive

$$
(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow-A)
$$

- Prove $(\neg B \Rightarrow-A) \rightarrow$ Conclude $(A \Rightarrow B)$

Proof by Contrapositive

Proposition: If $a, b \in \mathbb{Z}$ s.t. $a+b$ is even, then a and b have the same parity
\rightarrow whiteboard

Proof Techniques

Proof by cases

Disproof by counterexample

- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Proof by contrapositive

- Law of contrapositive

$$
(A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow-A)
$$

- Prove $(\neg B \Rightarrow-A) \rightarrow$ Conclude $(A \Rightarrow B)$

Proof by contradiction

Proof by Contradiction
Template
Goal: Proof X
(1) $\neg x$ by Assumption
(5) Logical contradiction
(6) x

Example from Intro ML

Note: Just an example. Out of scope.

PAC Learning: Theorem 1
A $h \in \mathcal{H}$ is consistent with the
training data if $\hat{R}(h)=0$
(1) Assume k "bad" hypotheses $h, h_{2} \ldots h_{k}$ with $R\left(h_{i}\right)>\varepsilon$
(2) Pick bad h_{i} : Probe h_{i} is consiittent $\omega /$ first train point $\leq 1-\varepsilon$
Prob h_{i} is cosisitent w/ fisst train point $\leqslant 1-\varepsilon$
Prob $\frac{h_{i} \text { is consistent } w / \text { first } N \text { train points }}{\hat{R}\left(h_{i}\right)=0} \leqslant 1-\varepsilon$
h_{i}
(3) Prob at least one bad h_{i} is consistent
(4) $1-x \leq e^{-x} \Rightarrow|H|(1-\varepsilon)^{N} \leq|H| e^{-\varepsilon N} \quad \leq|H|(1-\varepsilon)^{N}$
(5) Calc N and δ s.t. $\sqrt{H /} / e^{-\varepsilon N} \leq \delta$
(6) Solve N
$|H| 1 / \delta \leq \frac{1}{e^{-\varepsilon N}}$
$\log |H|+\log 1 / \delta \leq \varepsilon N$
Assume $N \geq \frac{1}{\epsilon}[\log |H|+\log 1 / \delta]$
with prob δ
$\exists h$ st $\underline{R(h)>\varepsilon}$ and $\hat{R}(h)=0$
with prob $1-\delta$ "bad"
all $h \in H$ with $\frac{R(h)>\varepsilon}{\hat{R}(h)=0}$ have $\frac{\hat{R}(h)>0}{\frac{R}{7 B}}$ "good" $\frac{R(h) \leq \varepsilon}{\frac{R A}{7 A}}$
\Rightarrow all $h \in H$ with
$\frac{\text { Contrapositive }}{A \Rightarrow B}$

Plan

Wrap-up Overview \rightarrow Lecture 1 slides

Proof Techniques
\checkmark Proof by cases
\checkmark Disprove by counterexample
\checkmark Proof by contrapositive
\checkmark Proof by contradiction

Perceptron Algorithm

- Prep: ML tasks, data, notation
- Prep: Geometry of linear models

ML Data, Tasks, Notation

Notation alert!
>Regression

$$
\begin{aligned}
\mathcal{D}= & \left\{\left(x^{(i)}, \quad y^{(i)}\right)\right\}_{i=1}^{4} \\
= & \{(-1, \quad 2.5), \\
& (7,-1.5), \\
& (-5, \quad 4.5), \\
& (1.5, \quad 1.25)\} \\
y= & f(x) \\
= & W x+b \\
& \uparrow \text { parameters }
\end{aligned}
$$

ML Data, Tasks, Notation

Classification

$$
z=w x+b
$$

$$
y=\operatorname{sign}(w x+b)
$$

$$
\operatorname{sign}(z)= \begin{cases}+1 & \text { if } z \geqslant 0 \\ -1 & 0 . w .\end{cases}
$$

$$
\begin{aligned}
& \begin{aligned}
\mathcal{D}= & \left.\left\{\begin{array}{ll}
\left(x^{(i)},\right. & \left.\left.y^{(i)}\right)\right\}_{i=1}^{4} \\
= & \left\{\begin{array}{ll}
(-1, & 1), \\
& (7,
\end{array}\right) \\
& \left(\begin{array}{rl}
-5, & 1
\end{array}\right), \\
& (1.5,
\end{array}\right)\right\}
\end{aligned} \\
& \begin{aligned}
\mathcal{D}= & \left.\left\{\begin{array}{ll}
\left(x^{(i)},\right. & \left.\left.y^{(i)}\right)\right\}_{i=1}^{4} \\
= & \left\{\begin{array}{ll}
(-1, & 1), \\
& (7,
\end{array}\right) \\
& \left(\begin{array}{rl}
-5, & 1
\end{array}\right), \\
& (1.5,
\end{array}\right)\right\}
\end{aligned} \\
& \begin{aligned}
\mathcal{D}= & \left.\left\{\begin{array}{ll}
\left(x^{(i)},\right. & \left.\left.y^{(i)}\right)\right\}_{i=1}^{4} \\
= & \left\{\begin{array}{ll}
(-1, & 1), \\
& (7,
\end{array}\right) \\
& \left(\begin{array}{rl}
-5, & 1
\end{array}\right), \\
& (1.5,
\end{array}\right)\right\}
\end{aligned} \\
& \begin{aligned}
\mathcal{D}= & \left.\left\{\begin{array}{ll}
\left(x^{(i)},\right. & \left.\left.y^{(i)}\right)\right\}_{i=1}^{4} \\
= & \left\{\begin{array}{ll}
(-1, & 1), \\
& (7,
\end{array}\right) \\
& \left(\begin{array}{rl}
-5, & 1
\end{array}\right), \\
& (1.5,
\end{array}\right)\right\}
\end{aligned} \\
& \begin{aligned}
\mathcal{D}= & \left.\left\{\begin{array}{ll}
\left(x^{(i)},\right. & \left.\left.y^{(i)}\right)\right\}_{i=1}^{4} \\
= & \left\{\begin{array}{ll}
(-1, & 1), \\
& (7,
\end{array}\right) \\
& \left(\begin{array}{rl}
-5, & 1
\end{array}\right), \\
& (1.5,
\end{array}\right)\right\}
\end{aligned}
\end{aligned}
$$

Perceptron

Exercise

Geometry

Draw a picture of the region corresponding to:
$w_{1} x_{1}+w_{2} x_{2}+b>0$
where $w_{1}=2, w_{2}=3, b=6$
Draw the vector

$$
\boldsymbol{w}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

Answer Here:

Poll 1

Which is the correct vector \boldsymbol{w} ?

A.
B.
C.
D.
E. I don't know

