
Plan

Wrap-up Overview → Lecture 1 slides

Proof Techniques

- ✓ Proof by cases
- ✓ Disprove by counterexample
- Proof by contrapositive
- Proof by contradiction

Perceptron Algorithm

10-607 Computational Foundations for Machine Learning

Proof Techniques & Perceptron Algorithm

Instructor: Pat Virtue

Proof Techniques

Proof by cases

Disproof by counterexample

- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Proof by contrapositive

Previous Poll

Given model m: {A: True, B: False}

Does m satisfy the following sentence:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$$(A \Rightarrow B) \Leftrightarrow (A \Rightarrow B) \Leftrightarrow (A \Rightarrow B)$$

- ii. No
- iii. Not enough information
- iv. Syntax error in sentence

Previous Poll

Truth table for $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

How many rows do we need (excluding a header)?

- i. 2
- ii. 4
- iii. 6
- iv. 8
- v. 16

Previous Poll

Truth table for
$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

7B

How many columns should we have?

$$A \mid B \mid A \Rightarrow B \mid \neg B \Rightarrow \neg A$$

Exercise

Truth table for $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

Exercise

Truth table for $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

A	В	$\neg A$	¬B	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$	$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$
F	F	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т
Т	F	F	Т	F	F	Т
Т	Т	F	F	Т	T	Т

Proof Techniques

Proof by cases

Disproof by counterexample

- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Proof by contrapositive

Law of contrapositive

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

■ Prove $(\neg B \Rightarrow \neg A) \rightarrow$ Conclude $(A \Rightarrow B)$

Proof by Contrapositive

Proposition: If a, b $\in \mathbb{Z}$ s.t. a+b is even, then a and b have the same *parity*

→ whiteboard

Proof Techniques

Proof by cases

Disproof by counterexample

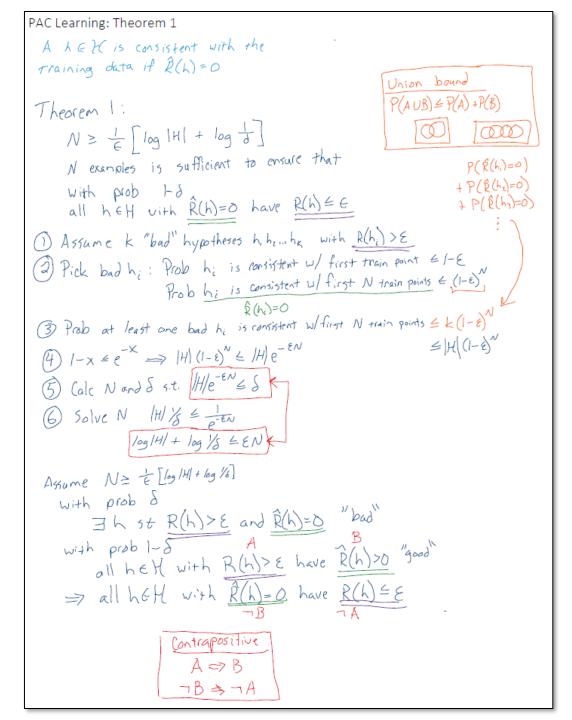
- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Proof by contrapositive

Law of contrapositive

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

■ Prove $(\neg B \Rightarrow \neg A) \rightarrow$ Conclude $(A \Rightarrow B)$


Proof by contradiction

Proof by Contradiction

Template

Example from Intro ML

Note: Just an example. Out of scope.

Plan

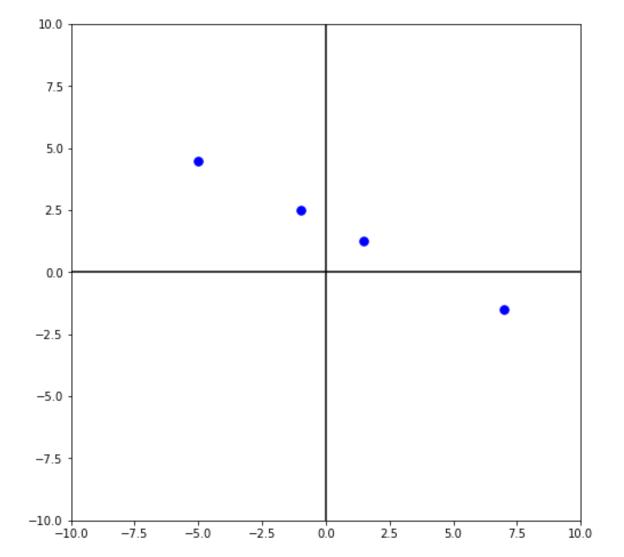
Wrap-up Overview → Lecture 1 slides

Proof Techniques

- ✓ Proof by cases
- ✓ Disprove by counterexample
- ✓ Proof by contrapositive
- ✓ Proof by contradiction

Perceptron Algorithm

- Prep: ML tasks, data, notation
- Prep: Geometry of linear models

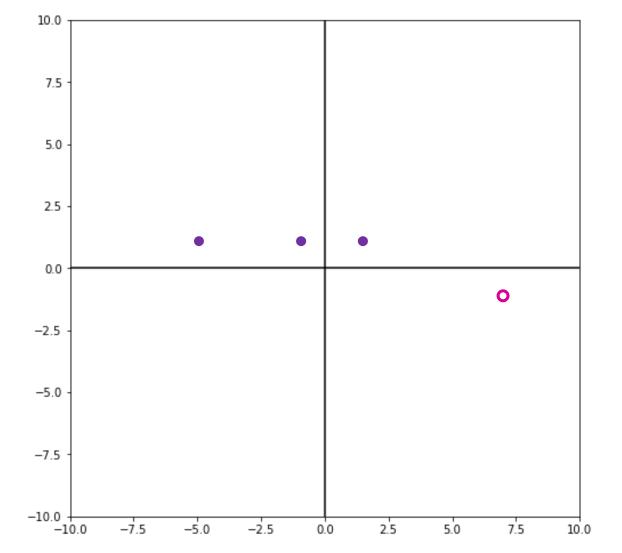

Notation alert!

ML Data, Tasks, Notation

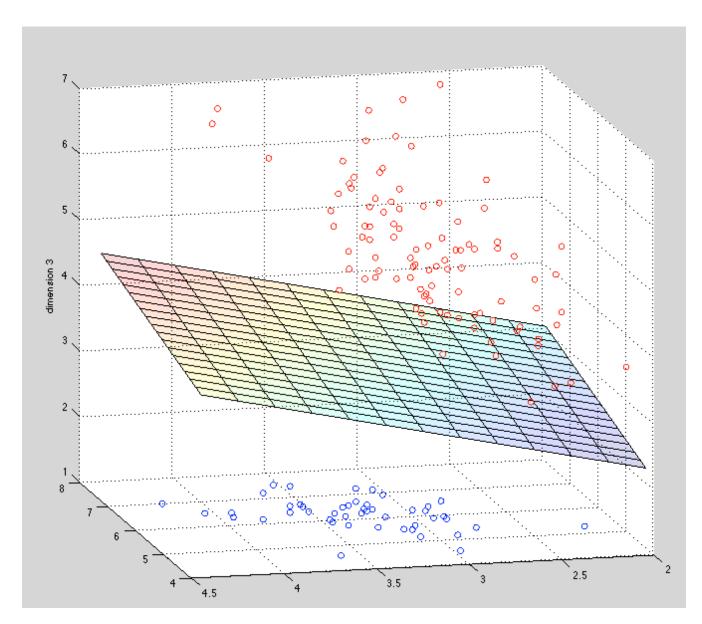
Regression

$$\mathcal{D} = \left\{ \begin{pmatrix} x^{(i)}, & y^{(i)} \end{pmatrix} \right\}_{i=1}^{4}$$

$$= \left\{ \begin{pmatrix} -1, & 2.5 \end{pmatrix}, \\ \begin{pmatrix} 7, & -1.5 \end{pmatrix}, \\ \begin{pmatrix} -5, & 4.5 \end{pmatrix}, \\ \begin{pmatrix} 1.5, & 1.25 \end{pmatrix} \right\}$$



ML Data, Tasks, Notation

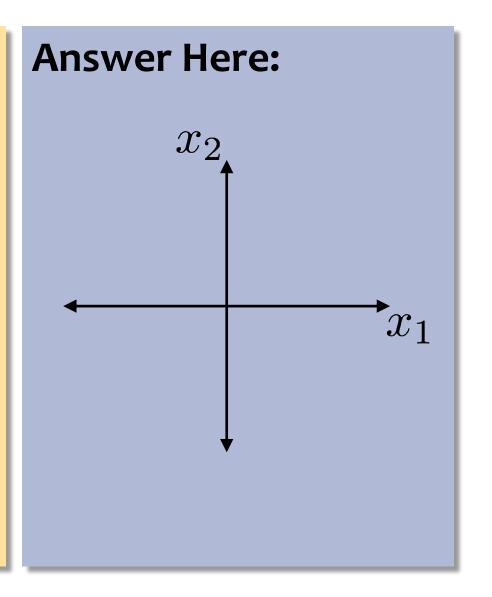

Classification

$$\mathcal{D} = \left\{ \begin{pmatrix} x^{(i)}, & y^{(i)} \end{pmatrix} \right\}_{i=1}^{4}$$

$$= \left\{ \begin{pmatrix} -1, & 1 \end{pmatrix}, \\ \begin{pmatrix} 7, & -1 \end{pmatrix}, \\ \begin{pmatrix} -5, & 1 \end{pmatrix}, \\ \begin{pmatrix} 1.5, & 1 \end{pmatrix} \right\}$$

Perceptron

Exercise


Geometry

Draw a picture of the region corresponding to:

$$w_1x_1 + w_2x_2 + b > 0$$

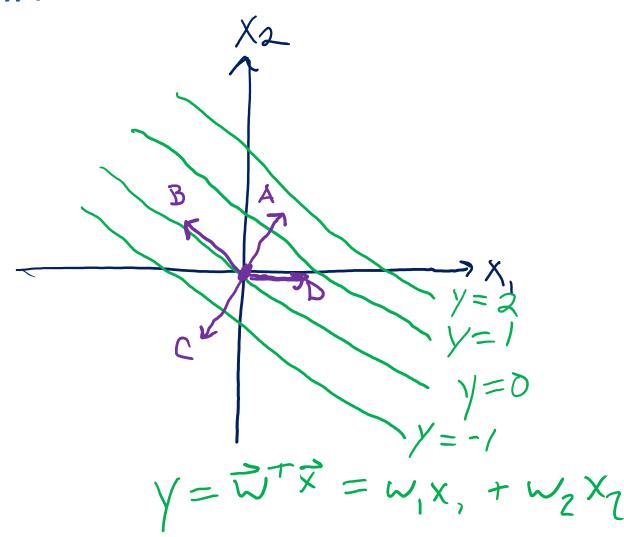
where $w_1 = 2, w_2 = 3, b = 6$

Draw the vector

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Poll 1

Which is the correct vector w?


A.

B.

C

D.

E. I don't know

