

Correction

Propositional logic inference rules

$$a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c)$$
$$a \vee (b \wedge c) \equiv (a \vee b) \wedge (a \vee c)$$

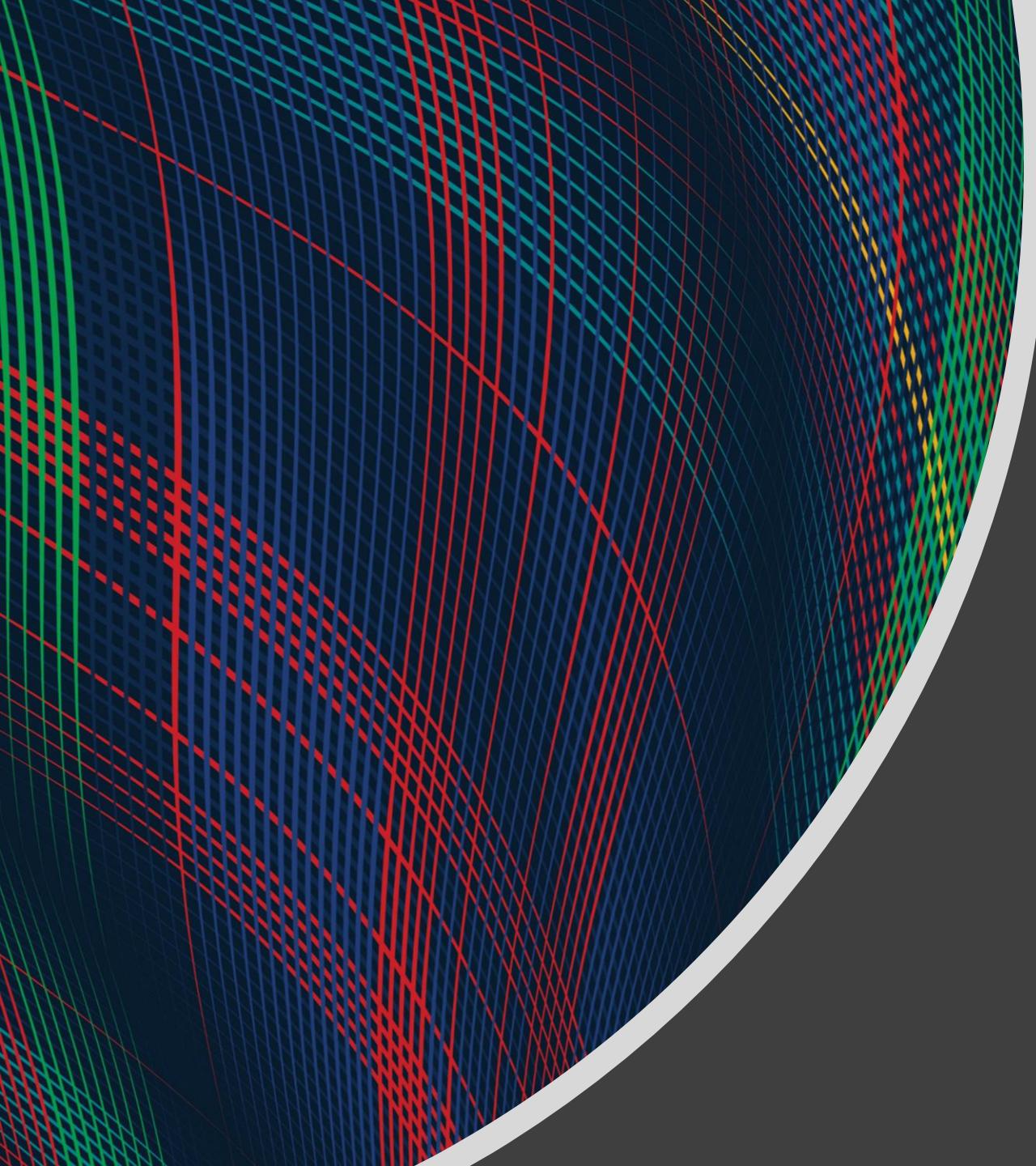
- *modus ponens*: from premiss p and $p \Rightarrow q$, conclude q
- \wedge introduction: if we separately prove p and q , then that constitutes a proof of $p \wedge q$.
- \wedge elimination: from $p \wedge q$ we can conclude either of p and q separately.
- \vee introduction: from p we can conclude $p \vee q$ for any q .
- \vee elimination (also called proof by cases): if we know $p \vee q$ (the cases) and we have both $p \vee r$ and $p \vee r$ (the case-specific proofs), then we can conclude r .
- T introduction: we can conclude T from no assumptions.
- F elimination: from F we can conclude an arbitrary formula p .
- Associativity: both \wedge and \vee are associative: it doesn't matter how we parenthesize an expression like $a \wedge b \wedge c \wedge d$. (So in fact we often just leave the parentheses out in such cases. But when having \vee and \wedge together, it's a good idea to keep the parentheses.)
- Distributivity: \wedge and \vee distribute over one another; for example $a \wedge (b \vee c)$ is equivalent to $(a \vee b) \wedge (a \vee c)$.
- Commutativity: both \wedge and \vee are commutative (symmetric in the order of their arguments), so we can re-order their arguments however we please. For example, $a \wedge b \wedge c$ is equivalent to $c \wedge b \wedge a$.

Plan

Wrap-up Overview → Lecture 1 slides

Proof Techniques

- Proof by cases
- Disprove by counterexample
- Proof by contrapositive



10-607 Computational Foundations for Machine Learning

Proof Techniques

Instructor: Pat Virtue

Proof Techniques

Proof by Cases

Proof by Cases

Goal is to prove X

1 $\phi \vee \psi$ Assume

2 Case 1: ϕ

a)

b)

c) $\phi \Rightarrow X$

3 Case 2: ψ

a)

b)

c) $\psi \Rightarrow X$

4 X

by \vee elimination

Proof by Cases

Notation Alert!

Proposition: Let $a, b \in \mathbb{Z}$. If ab is even, then either a is even or b is even (or both).

Case 1: ee

$$2 \cdot 2 = 4$$

case 2: e o

$$2 \cdot 3 = 6$$

case 3: o e

$$3 \cdot 2 = 6$$

case 4: oo

$$3 \cdot 3 = 9$$

Proof by Cases

Proposition: Let $a, b \in \mathbb{Z}$. If ab is even, then either a is even or b is even (or both).

→ whiteboard

Proof Techniques

Proof by cases

Disproof by counterexample

- One example is not sufficient to prove
- One counterexample is sufficient to disprove

Disprove by counterexample

Proposition: Let $a, b \in \mathbb{Z}$. If a is odd and b is odd, then $a+b$ is odd

$$\text{Let } a = 3$$

$$\text{Let } b = 3$$

$$a + b = 3 + 3 = 6$$

$a + b$ not odd

Poll 1

Given model m : $\{A: \text{True}, B: \text{False}\}$

Does m satisfy the following sentence:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

$\begin{matrix} F \\ T \end{matrix} \begin{matrix} F \\ T \end{matrix} \begin{matrix} \neg F \\ T \end{matrix} \begin{matrix} \neg T \\ \neg A \end{matrix}$

i. Yes

- ii. No
- iii. Not enough information
- iv. Syntax error in sentence

Poll 2

Truth table for $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

How many rows do we need (excluding a header)?

- i. 2
- ii. 4
- iii. 6
- iv. 8
- v. 16

Poll 3

Truth table for $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

How many columns should we have?

- i. 2
- ii. 3 ←
- iii. 4
- iv. 5 ←
- v. 6

- 7 ←

A		B		$A \Rightarrow B$		$\neg B \Rightarrow \neg A$	
T	T	T	T	T	T	T	T
T	F	T	F	F	T	F	T
F	T	F	T	T	F	T	F
F	F	F	F	T	F	T	F