
As you walk in
Welcome!

1) Sit at a table next to another student

2) Make name plate

▪ Fold paper in half

▪ Write preferred name

▪ Below write you favorite fictional AI/robot

Images: ai.berkeley.edu
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Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info
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Course Team
Instructor Teaching Assistants



Course Team
Students!!



Team Tips
Try not to act surprised

https://jvns.ca/blog/2017/04/27/no-feigning-surprise/



Team Tips
Try not to act surprised

https://jvns.ca/blog/2017/04/27/no-feigning-surprise/



Two-column Proof
Give an explicit justification for each statement based on previous 
statements

Prove Socrates is mortal

Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Notation Alert!



Warm-up Exercise
Propositional logic inference rules



Warm-up Exercise
Use the propositional logic inference rules provided to prove:

𝑎 ∧ 𝑏 ⇒ (𝑏 ∧ 𝑎)

However, you cannot use the commutativity rule.

Write your proof in two-column format, i.e., give an explicit justification for 
each statement based on previous statements



Warm-up Exercise
Use the propositional logic inference rules provided to prove:

𝑎 ∧ 𝑏 ⇒ (𝑏 ∧ 𝑎)

However, you cannot use the commutativity rule.

Write your proof in two-column format, i.e., give an explicit justification for 
each statement based on previous statements



Proof by Cases
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Analysis: Perceptron

14
Figure from Nina Balcan

Perceptron Mistake Bound
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Analysis: Perceptron

15

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.



Analysis: Perceptron
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Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 1: for some A, 

Cauchy-Schwartz inequality



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 2: for some B, 



Analysis: Perceptron

19

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

The total number of mistakes 
must be less than this



Logic Language
Natural language?

Propositional logic
▪ Syntax: P  (Q  R);        X1  (Raining  Sunny)

▪ Possible world: {P=true, Q=true, R=false, S=true} or 1101

▪ Semantics:    is true in a world iff is  true and  is true (etc.)

First-order logic
▪ Syntax: x y P(x,y)  Q(Joe,f(x))  f(x)=f(y)

▪ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; f(o1)=o1;
Joe=o3; etc.

▪ Semantics: () is true in a world if =oj and  holds for oj; etc.



Propositional Logic



Propositional Logic
Symbol:

▪ Variable that can be true or false

▪ We’ll try to use capital letters, e.g. A, B, P1,2

▪ Often include True and False

Operators:

▪  A: not A

▪ A  B: A and B (conjunction)

▪ A  B: A or B (disjunction) Note: this is not an “exclusive or”

▪ A  B: A implies B (implication). If A then B 

▪ A  B: A if and only if B (biconditional)

Sentences



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true

ii. 𝐴 ∨ 𝐶 is guaranteed to be false

iii. We don’t have enough information to say anything 
definitive about 𝐴 ∨ 𝐶



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true
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If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?
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false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true

ii. 𝐴 ∨ 𝐶 is guaranteed to be false

iii. We don’t have enough information to say anything 
definitive about 𝐴 ∨ 𝐶



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i. 𝐴 is guaranteed to be true

ii. 𝐴 is guaranteed to be false

iii. We don’t have enough information to say anything 
definitive about 𝐴



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true



Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i. 𝐴 is guaranteed to be true

ii. 𝐴 is guaranteed to be false

iii. We don’t have enough information to say anything 
definitive about 𝐴



Propositional Logic
Symbol:

▪ Variable that can be true or false

▪ We’ll try to use capital letters, e.g. A, B, P1,2

▪ Often include True and False

Operators:

▪  A: not A

▪ A  B: A and B (conjunction)

▪ A  B: A or B (disjunction) Note: this is not an “exclusive or”

▪ A  B: A implies B (implication). If A then B 

▪ A  B: A if and only if B (biconditional)

Sentences



Propositional Logic Syntax
Given: a set of proposition symbols {X1, X2, …, Xn} 

▪ (we often add True and False for convenience)

Xi is a sentence

If  is a sentence then  is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then   is a sentence

If  and  are sentences then   is a sentence

And p.s. there are no other sentences!



𝛂 ∨ 𝛃 is inclusive or, not exclusive

Notes on Operators



Truth Tables
𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂 𝛃 𝛂  𝛃

F F F

F T F

T F F

T T T

𝛂 𝛃 𝛂  𝛃

F F F

F T T

T F T

T T T



𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to  ¬𝛂 ∨ 𝛃

▪ Says who?

Notes on Operators



Truth Tables
𝛂⇒ 𝛃 is equivalent to  ¬𝛂 ∨ 𝛃

𝛂 𝛃 𝛂⇒ 𝛃 ¬𝛂 ¬𝛂 ∨ 𝛃

F F T T T

F T T T T

T F F F F

T T T F T



𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to  ¬𝛂 ∨ 𝛃

▪ Says who?

𝛂⇔ 𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)

▪ Prove it!

Notes on Operators



Truth Tables
𝛂⇔ 𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)

𝛂 𝛃 𝛂⇔ 𝛃 𝛂⇒ 𝛃 𝛃⇒ 𝛂 (𝛂⇒𝛃) ∧ (𝛃⇒𝛂)

F F T T T T

F T F T F F

T F F F T F

T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(𝛂⇔ 𝛃) ⇔ [(𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)]



Inference Rules 
Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Unit Resolution

𝑎∨𝑏, ¬𝑏∨𝑐

𝑎∨𝑐

General Resolution

𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Notation Alert!



Propositional Logic

function PL-TRUE?(,model) returns true or false

if  is a symbol then return Lookup(, model)

if Op() =  then return not(PL-TRUE?(Arg1(),model))

if Op() =  then return and(PL-TRUE?(Arg1(),model), 

PL-TRUE?(Arg2(),model))

etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?



Today

Course Info

Warm-up exercise

Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info
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Optimization

Computer 
Science

Probability

Calculus

Linear Algebra

Statistics

What is ML?

Machine Learning

Optimization

Probability

Calculus

Linear Algebra

Computer 
Science

Domain of 
Interest

Measure
Theory

Statistics



Why Computer Science for ML?

To best understand     A     we need     B

43

A B
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Why Computer Science for ML?

To best understand     A     we need     B

44

A B

Analysis of Exact 
Inference in Graphical 
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms
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Factor Graph Notation

45

• Variables:

• Factors:

Joint Distribution
X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}
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X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors

46

• Factors:

v 3

n 4

p 0.1

d 0.1

v n p d

v 1 6 3 4

n 8 4 2 0.1

p 1 3 1 3

d 0.1 8 0 0

s vppp…

s 0 2 .3

vp 3 4 2

pp .1 2 1

…

s vppp…

s 0 2 .3

vp 3 4 2

pp .1 2 1

…

s vppp…

s 0 2 .3

vp 3 4 2

pp .1 2 1

…
s
vp
pp
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Inference

Given a factor graph, two common tasks …
– Compute the most likely joint assignment,

x* = argmaxx p(X=x)

– Compute the marginal distribution of variable Xi:
p(Xi=xi) for each value xi

Both consider all joint assignments.

Both are NP-Hard in general.

So, we turn to approximations.

47

p(Xi=xi) = sum of 
p(X=x) over joint 
assignments with 
Xi=xi
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Marginals by Sampling on Factor Graph

48time likeflies an arrow

X1
ψ2 X2

ψ4 X3
ψ6 X4

ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Suppose we took many samples from the distribution over 
taggings:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t 
G

o
rm

le
y



Marginals by Sampling on Factor Graph

49time likeflies an arrow

X1
ψ2 X2

ψ4 X3
ψ6 X4

ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

The marginal p(Xi = xi) gives the probability that variable Xi

takes value xi in a random sample

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t 
G

o
rm

le
y



Marginals by Sampling on Factor Graph

50time likeflies an arrow

X1
ψ2 X2

ψ4 X3
ψ6 X4

ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Estimate the 
marginals as:

n 4/6

v 2/6

n 3/6

v 3/6

p 4/6

v 2/6 d 6/6 n 6/6
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Why Computer Science for ML?

To best understand     A     we need     B

51

A B

Analysis of Exact 
Inference in Graphical 
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

Implementation 
Design of a Deep 
Learning Library

Programming & Efficiency
• Debugging for Machine Learning
• Efficient Implementation / Profiling ML Algorithms
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Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon

52
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Chain Rule Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx 
and dy/dz for the function below?

Differentiation

53

Finite

Difference

Solution:
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Backpropagation

54

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The 

algorithm defines a directed acyclic graph, where each variable is a 
node (i.e. the “computation graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables
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Why Computer Science for ML?

To best understand     A     we need     B
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A B

Analysis of Exact 
Inference in Graphical 
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

Implementation 
Design of a Deep 
Learning Library

Programming & Efficiency
• Debugging for Machine Learning
• Efficient Implementation / Profiling ML Algorithms

Optimization for 
Support Vector 
Machines (SVMs)

Optimization
• Unconstrained Optimization
• Preconditioning
• Constrained Optimization
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Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)

56

• Instead of minimizing the primal, we can maximize the 
dual problem

• For the SVM, these two problems give the same 
answer (i.e. the minimum of one is the maximum of the 
other)

• Definition: support vectors are those points x(i) for 
which α(i) ≠ 0
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SVM QP

57
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SVM QP
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SVM QP
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SVM QP
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SVM QP
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SVM QP
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Why Computer Science for ML?

To best understand     A     we need     B
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A B

Analysis of Exact 
Inference in Graphical 
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

Implementation 
Design of a Deep 
Learning Library

Programming & Efficiency
• Debugging for Machine Learning
• Efficient Implementation / Profiling ML Algorithms

Optimization for 
Support Vector 
Machines (SVMs)

Optimization
• Unconstrained Optimization
• Preconditioning
• Constrained Optimization

The core content for this course is the computer science (Column B), but you will 
apply what you learn to real problems in machine learning (Column A)
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AI Definition by John McCarthy

What is artificial intelligence

▪ It is the science and engineering of making 
intelligent machines, especially intelligent 
computer programs

What is intelligence

▪ Intelligence is the computational part of the 
ability to achieve goals in the world

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html



AI Stack for CMU AI
“AI must understand the human 
needs and it must make smart 
design decisions based on that 
understanding”

A
IStack

https://ai.cs.cmu.edu/about

https://ai.cs.cmu.edu/about


AI Stack for CMU AI
“Machine learning focuses on 
creating programs that learn from 
experience.”

“It advances computing through 
exposure to new scenarios, 
testing and adaptation, while 
using pattern- and trend-
detection to help the computer 
make better decisions in similar, 
subsequent situations.”

A
IStack

https://ai.cs.cmu.edu/about

https://ai.cs.cmu.edu/about


Artificial Intelligence vs Machine Learning?

Artificial Intelligence

Machine Learning

Deep Learning



A Brief History of AI

Images: ai.berkeley.edu



A Brief History of AI

https://books.google.com/ngrams

AI
Excitement!
1950-1970

Knowledge 
Based

Systems
1970-1990

Statistical 
Approaches

1990-

Deep 
Learning Era

2012-



A Brief History of AI
1940-1950: Early days
▪ 1943: McCulloch & Pitts: Boolean circuit model of brain

▪ 1950: Turing's “Computing Machinery and Intelligence”

1950—70: Excitement: Look, Ma, no hands!
▪ 1950s: Early AI programs, including Samuel's checkers program, Newell & 

Simon's Logic Theorist, Gelernter's Geometry Engine

▪ 1956: Dartmouth meeting: “Artificial Intelligence” adopted

1970—90: Knowledge-based approaches
▪ 1969—79: Early development of knowledge-based systems

▪ 1980—88: Expert systems industry booms

▪ 1988—93: Expert systems industry busts: “AI Winter”

1990—: Statistical approaches
▪ Resurgence of probability, focus on uncertainty

▪ General increase in technical depth

▪ Agents and learning systems… “AI Spring”?

2012—: Deep learning
▪ 2012: ImageNet & AlexNet

Images: ai.berkeley.edu



ML Applications?

71Slide credit: CMU MLD Matt Gormley



Speech Recognition

1. Learning to recognize spoken words

72

“…the SPHINX system (e.g. 

Lee 1989) learns speaker-

specific strategies for 

recognizing the primitive 

sounds (phonemes) and 

words from the observed 

speech signal…neural 

network methods…hidden 

Markov models…”

(Mitchell, 1997)

THEN

Source: https://www.stonetemple.com/great-knowledge-box-
showdown/#VoiceStudyResults

NOW

Slide credit: CMU MLD Matt Gormley



Robotics

2. Learning to drive an autonomous vehicle

73

“…the ALVINN system 

(Pomerleau 1989) has used 

its learned strategies to drive 

unassisted at 70 miles per 

hour for 90 miles on public 

highways among other 

cars…”

(Mitchell, 1997)

THEN

waymo.com

NOW

https://www.geek.com/wp-
content/uploads/2016/03/uber.jpg

NOW

Slide credit: CMU MLD Matt Gormley



Games / Reasoning

3. Learning to beat the masters at board games

74

“…the world’s top computer 

program for backgammon, 

TD-GAMMON (Tesauro, 

1992, 1995), learned its 

strategy by playing over one 

million practice games 

against itself…”

(Mitchell, 1997)

THEN NOW

Slide credit: CMU MLD Matt Gormley



Computer Vision

4. Learning to recognize images

75

“…The recognizer is a 
convolution network that 
can be spatially replicated. 
From the network output, a 
hidden Markov model 
produces word scores. The 
entire system is globally 
trained to minimize word-
level errors.…”

(LeCun et al., 1995)

THEN NOW

Images from https://blog.openai.com/generative-models/Slide credit: CMU MLD Matt Gormley



Learning Theory

• 5. In what cases and how well can we learn?

76

Sample%Complexity%Results

34

Realizable Agnostic

Four$Cases$we$care$about…

1. How many examples do we need 
to learn?

2. How do we quantify our ability to 
generalize to unseen data?

3. Which algorithms are better 
suited to specific learning 
settings?
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10-606 and 10-607
▪ Mini Courses

▪ 10-606

▪ 10-607

▪ Intro ML Courses

▪ 10-315

▪ 10-301/601

▪ 10-701

▪ 10-715

▪ Prerequisites



Today

Course Info

Warm-up exercise

Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info

Images: ai.berkeley.edu



Course Information
Website: https://www.cs.cmu.edu/~10607

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication:

piazza.com

E-mail (if piazza doesn’t work):

pvirtue@andrew.cmu.edu

https://www.cs.cmu.edu/~10607
http://canvas.cmu.edu/
http://gradescope.com/
https://piazza.com/cmu/fall2021/10607
mailto:pvirtue@cmu.edu


Course Information
Lectures

▪ Lectures are recorded

▪ Shared with our course and ML course staff only

▪ Participation point earned by answering Piazza polls in lecture

▪ Quizzes will in lecture, announced two days ahead of time

▪ Slides will be posted

Recitations

▪ Recommended attendance

▪ No plans to record at this point

▪ No participation points in recitation

▪ Recitation materials are in-scope for quizzes and exams



Course Information
Office Hours

▪ OH calendar on course website

▪ OH-by-appointment requests are certainly welcome

Mental Health


