As you walk in
CS. cmu.edu / ~ 10607

## Welcome!

1) Sit at a table next to another student
2) Make name plate

- Fold paper in half
- Write preferred name
- Below write you favorite fictional AI/robot



# 10-607 <br> Computational Foundations for Machine Learning 

Instructor: Pat Virtue

## Today

## Course Info

Warm-up exercise
Propositional Logic and Proofs
ML and 606/607 Intro
More Course Info


## Course Team

Instructor


Pat
Virtue
pvirtue

Teaching Assistants


## Course Team

Students!!


Team Tips
Try not to act surprised

Here's a thing that happens a lot:


Team Tips
Try not to act surprised

Here's a cool simple trick!
Don't act surprised when someone cloesn't know something you thought they knew
(even if you are a little surprised!) It doesn't help.
Then you get to have fun times like this:



Cool thing!?!

And it gets easier with practice! $\uplus \uplus \|$

Two-column Proof
A: Socrates is human
Give an explicit justification for each statement based on previous statements

Prove Socrates is mortal
$\qquad$

$\frac{$|  Justification  |
| :--- |
| $\frac{\text { Assumption }}{\text { Assumption }}$ |
| $\frac{\text { Nodus Ponens }}{} \text { Notation Alert! }$ |
| $\frac{\text { Nodus Ponens }}{\alpha=\beta, \alpha}$ |
| $\frac{\alpha}{3}$ |}{}

## Warm-up Exercise

## Propositional logic inference rules

- modus ponens: from premesis $p$ and $p \Rightarrow q$, conclude $q$
- $\wedge$ introduction: if we separately prove $p$ and $q$, then that constitutes a proof of $p \wedge q$.
- $\wedge$ elimination: from $p \wedge q$ we can conclude either of $p$ and $q$ separately.
- $\vee$ introduction: from $p$ we can conclude $p \vee q$ for any $q$.
- $\vee$ elimination (also called proof by cases): if we know $p \vee q$ (the cases) and we have both $p \vee r$ and $p \vee r$ (the casespecific proofs), then we can conclude $r$.
- T introduction: we can conclude T from no assumptions.
- F elimination: from F we can conclude an arbitrary formula $p$.
- Associativity: both $\wedge$ and $\vee$ are associative: it doesn't matter how we parenthesize an expression like $a \wedge b \wedge c \wedge d$. (So in fact we often just leave the parentheses out in such cases. But when having $\vee$ and $\wedge$ together, it's a good idea to keep the parentheses.)
- Distributivity: $\wedge$ and $\vee$ distribute over one another; for example, $a \vee(b \wedge c)$ is equivalent to $(a \vee b) \wedge(a \vee c)$ and $a \wedge(b \vee c)$ is equivalent to $(a \wedge b) \vee(a \wedge c)$.
- Commutativity: both $\wedge$ and $\vee$ are commutative (symmetric in the order of their arguments), so we can re-order their arguments however we please. For example, $a \wedge b \wedge c$ is equivalent to $c \wedge b \wedge a$.

Warm-up Exercise
Use the propositional logic inference rules provided to prove:

$$
(a \wedge b) \Rightarrow(b \wedge a)
$$

However, you cannot use the commutativity rule.
Write your proof in two-column format, ie., give an explicit justification for each statement based on previous statements

| 1 | $a \wedge b b$ |  |
| :--- | :---: | :--- |
| 2 | $a$ | $\wedge$ sumption |
| 3 | $b$ | $\wedge$ Elim (1) |
| 4 | $b \wedge a$ | $\wedge$ Elim (1) |
| 5 | $a \wedge b \Rightarrow b \wedge a$ | $\wedge$ Intro (2) (3) |
|  | $\Rightarrow$ Intro $1-4$ |  |

## Warm-up Exercise

Use the propositional logic inference rules provided to prove:

$$
(a \wedge b) \Rightarrow(b \wedge a)
$$

However, you cannot use the commutativity rule.
Write your proof in two-column format, i.e., give an explicit justification for each statement based on previous statements

Proof by Cases
Goal is to prove $x$
$1 \phi \vee \psi \quad$ Assume
2 Case 1: $\phi$
a)
b)
$\qquad$
c) $\phi \Rightarrow x$ $\qquad$
3 Case 2: \%
a) $\qquad$
b)
d) $\psi \Rightarrow x$
$4 x$ by $V$ elimination

Today

## Course Info

## Warm-up exercise

Propositional Logic and Proofs
ML and 606/607 Intro
More Course Info


## Analysis: Perceptron

## Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Suppose:

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and $y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i$
Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$



## Analysis: Perceptron

## Proof of Perceptron Mistake Bound:

We will show that there exist constants $A$ and $B$ s.t.

$$
A k \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq B \sqrt{k}
$$



## Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Suppose:

1. Finite size inputs: $\left\|x^{(i)}\right\| \leq R$
2. Linearly separable data: $\exists \boldsymbol{\theta}^{*}$ s.t. $\left\|\boldsymbol{\theta}^{*}\right\|=1$ and $y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right) \geq \gamma, \forall i$
Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$
k \leq(R / \gamma)^{2}
$$

```
Algorithm 1 Perceptron Learning Algorithm (Online)
    procedure PERCEPTRON \(\left(\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots\right\}\right)\)
        \(\boldsymbol{\theta} \leftarrow \mathbf{0}, k=1 \quad \triangleright\) Initialize parameters
        for \(i \in\{1,2, \ldots\}\) do \(\quad \triangleright\) For each example
            if \(y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \leq 0\) then
                \(\boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\)
                \(k \leftarrow k+1\)
```

        return \(\theta\)
    
## Analysis: Perceptron

## Proof of Perceptron Mistake Bound:

Part 1: for some A, $A k \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\|$
$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^{*}=\left(\boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\right) \boldsymbol{\theta}^{*}$
by Perceptron algorithm update
$=\boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^{*}+y^{(i)}\left(\boldsymbol{\theta}^{*} \cdot \mathbf{x}^{(i)}\right)$
$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^{*}+\gamma$
by assumption
$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^{*} \geq k \gamma$
by induction on $k$ since $\theta^{(1)}=\mathbf{0}$

$$
\begin{aligned}
& \Rightarrow\left\|\boldsymbol{\theta}^{(k+1)}\right\| \geq k \gamma \\
& \text { since }\|\mathbf{w}\| \times\|\mathbf{u}\| \geq \mathbf{w} \cdot \mathbf{u} \text { and }\left\|\theta^{*}\right\|=1
\end{aligned}
$$

## Analysis: Perceptron

## Proof of Perceptron Mistake Bound:

Part 2: for some $\mathrm{B},\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq B \sqrt{k}$

$$
\left\|\boldsymbol{\theta}^{(k+1)}\right\|^{2}=\left\|\boldsymbol{\theta}^{(k)}+y^{(i)} \mathbf{x}^{(i)}\right\|^{2}
$$

by Perceptron algorithm update

$$
\begin{aligned}
& =\left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2}+2 y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \\
& \leq\left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2} \\
& \text { since } k \text { th mistake } \Rightarrow y^{(i)}\left(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}\right) \leq 0 \\
& =\left\|\boldsymbol{\theta}^{(k)}\right\|^{2}+R^{2} \\
& \text { since }\left(y^{(i)}\right)^{2}\left\|\mathbf{x}^{(i)}\right\|^{2}=\left\|\mathbf{x}^{(i)}\right\|^{2}=R^{2} \text { by assumption and }\left(y^{(i)}\right)^{2}=1 \\
& \Rightarrow\left\|\boldsymbol{\theta}^{(k+1)}\right\|^{2} \leq k R^{2}
\end{aligned}
$$

by induction on $k$ since $\left(\theta^{(1)}\right)^{2}=0$

$$
\Rightarrow\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq \sqrt{k} R
$$

## Analysis: Perceptron

## Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$
\begin{aligned}
& k \gamma \leq\left\|\boldsymbol{\theta}^{(k+1)}\right\| \leq \sqrt{k} R \\
\Rightarrow & k \leq(R / \gamma)^{2}
\end{aligned}
$$

The total number of mistakes
must be less than this

## Logic Language

## Natural language?

## Propositional logic

$\rightarrow$ - Syntax: $P \vee(\neg Q \wedge R) ; \quad X_{1} \Leftrightarrow$ (Raining $\Rightarrow$ Sunny)

- Possible world: $\{P=$ true, $Q=$ true, $R=$ false, $S=$ true $\}$ or 1101
- Semantics: $\alpha \wedge \beta$ is true in a world iff is $\alpha$ true and $\beta$ is true (etc.)


## First-order logic

- Syntax: $\forall x \exists y P(x, y) \wedge \neg Q(J o e, f(x)) \Rightarrow f(x)=f(y)$
- Possible world: Objects $\mathrm{o}_{1}, \mathrm{o}_{2}, \mathrm{o}_{3} ; \mathrm{P}$ holds for $\left\langle\mathrm{o}_{1}, \mathrm{o}_{2}\right\rangle ; \mathrm{Q}$ holds for $\left\langle\mathrm{o}_{3}\right\rangle ; \mathrm{f}\left(\mathrm{o}_{1}\right)=\mathrm{o}_{1}$; $J o e=O_{3}$; etc.
- Semantics: $\phi(\sigma)$ is true in a world if $\sigma=o_{j}$ and $\phi$ holds for $\mathrm{o}_{\mathrm{j}}$; etc.


## Propositional Logic

## Propositional Logic

## Symbol:

- Variable that can be true or false
- We'll try to use capital letters, e.g. A, B, P ${ }_{1,2}$
- Often include True and False

Operators:

- $\neg \mathrm{A}: \operatorname{not} \mathrm{A}$
- $A \wedge B: A$ and $B$ (conjunction)
- $\mathrm{A} \vee \mathrm{B}: \mathrm{A}$ or B (disjunction) Note: this is not an "exclusive or"
- $A \Rightarrow B$ : $A$ implies $B$ (implication). If $A$ then $B$
- $A \Leftrightarrow B$ : $A$ if and only if $B$ (biconditional)

Sentences

## Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$ ?
i. $\quad A \vee C$ is guaranteed to be true
ii. $\quad A \vee C$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about $A \vee C$

## Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$ ?

| $A$ | $B$ | $C$ | $A \vee B$ | $\neg B \vee C$ | $A \vee C$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| false | false | false | false | true | false |
| false | false | true | false | true | true |
| false | true | false | true | false | false |
| false | true | true | true | true | true |
| true | false | false | true | true | true |
| true | false | true | true | true | true |
| true | true | false | true | false | true |
| true | true | true | true | true | true |

## Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$ ?

| $A$ | $B$ | $C$ | $A \vee B$ | $\neg B \vee C$ | $A \vee C$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| false | false | false | false | true | false |
| false | false | true | false | true | true |
| false | true | false | true | false | false |
| false | true | true | true | true | true |
| true | false | false | true | true | true |
| true | false | true | true | true | true |
| true | true | false | true | false | true |
| true | true | true | true | true | true |

## Poll 1

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A \vee C$ ?
i. $\quad A \vee C$ is guaranteed to be true
ii. $\quad A \vee C$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about $A \vee C$

## Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A$ ?
i. $\quad A$ is guaranteed to be true
ii. $\quad A$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about $A$

## Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A$ ?

| $A$ | $B$ | $C$ | $A \vee B$ | $\neg B \vee C$ | $A \vee C$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| false | false | false | false | true | false |
| false | false | true | false | true | true |
| false | true | false | true | false | false |
| false | true | true | true | true | true |
| true | false | false | true | true | true |
| true | false | true | true | true | true |
| true | true | false | true | false | true |
| true | true | true | true | true | true |

## Poll 2

If we know that $A \vee B$ and $\neg B \vee C$ are true, what do we know about $A$ ?
i. $\quad A$ is guaranteed to be true
ii. $\quad A$ is guaranteed to be false
iii. We don't have enough information to say anything definitive about $A$

## Propositional Logic

## Symbol:

- Variable that can be true or false
- We'll try to use capital letters, e.g. A, B, $P_{1,2}$
- Often include True and False

Operators:

- $\neg$ A: not A
- $A \wedge B: A$ and $B$ (conjunction)
- $\mathrm{A} \vee \mathrm{B}: \mathrm{A}$ or B (disjunction) Note: this is not an "exclusive or"
- $A \Rightarrow B$ : $A$ implies $B$ (implication). If $A$ then $B$
- $A \Leftrightarrow B$ : $A$ if and only if $B$ (biconditional)

Sentences

## Propositional Logic Syntax

Given: a set of proposition symbols $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$

- (we often add True and False for convenience) $X_{i}$ is a sentence
If $\alpha$ is a sentence then $\neg \alpha$ is a sentence
If $\alpha$ and $\beta$ are sentences then $\alpha \wedge \beta$ is a sentence
If $\alpha$ and $\beta$ are sentences then $\alpha \vee \beta$ is a sentence
If $\alpha$ and $\beta$ are sentences then $\alpha \Rightarrow \beta$ is a sentence
If $\alpha$ and $\beta$ are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
And p.s. there are no other sentences!

Notes on Operators
$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive

## Truth Tables

$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive

| $\boldsymbol{\alpha}$ | $\boldsymbol{\beta}$ | $\boldsymbol{\alpha} \wedge \boldsymbol{\beta}$ |
| :---: | :---: | :---: |
| F | F | F |
| F | T | F |
| T | F | F |
| T | T | T |


| $\boldsymbol{\alpha}$ | $\boldsymbol{\beta}$ | $\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ |
| :---: | :---: | :---: |
| F | F | F |
| F | T | T |
| T | F | T |
| T | T | T |

Notes on Operators
$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive
$\alpha \Rightarrow \boldsymbol{\beta}$ is equivalent to $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$

- Says who?


## Truth Tables

$\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ is equivalent to $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$

| $\boldsymbol{\alpha}$ | $\boldsymbol{\beta}$ | $\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ | $\neg \boldsymbol{\alpha}$ | $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$ |
| :---: | :---: | :---: | :---: | :---: |
| F | F | T | T | T |
| F | T | T | T | T |
| T | F | F | F | F |
| T | T | T | F | T |

## Notes on Operators

$\boldsymbol{\alpha} \vee \boldsymbol{\beta}$ is inclusive or, not exclusive
$\alpha \Rightarrow \boldsymbol{\beta}$ is equivalent to $\neg \boldsymbol{\alpha} \vee \boldsymbol{\beta}$

- Says who?
$\alpha \Leftrightarrow \boldsymbol{\beta}$ is equivalent to $(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})$
- Prove it!


## Truth Tables

$\boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}$ is equivalent to $(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})$

| $\boldsymbol{\alpha}$ | $\boldsymbol{\beta}$ | $\boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}$ | $\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ | $\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha}$ | $(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | F | T | T | T | T |
| F | T | F | T | F | F |
| T | F | F | F | T | F |
| T | T | T | T | T | T |

Equivalence: it's true in all models. Expressed as a logical sentence:

$$
(\boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}) \Leftrightarrow[(\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}) \wedge(\boldsymbol{\beta} \Rightarrow \boldsymbol{\alpha})]
$$

## Inference Rules

Modus Ponens

Unit Resolution

$$
\frac{a \vee b, \quad \neg b \vee c}{a \vee c}
$$

General Resolution

$$
\frac{a_{1} \vee \cdots \vee a_{m} \vee b, \quad \neg b \vee c_{1} \vee \cdots \vee c_{n}}{a_{1} \vee \cdots \vee a_{m} \vee c_{1} \vee \cdots \vee c_{n}}
$$

## Propositional Logic

Check if sentence is true in given model In other words, does the model satisfy the sentence?
function PL-TRUE?( $\alpha$, model) returns true or false if $\alpha$ is a symbol then return Lookup( $\alpha$, model) if $\mathrm{Op}(\alpha)=\neg$ then return $\operatorname{not}($ PL-TRUE? $(\operatorname{Arg} 1(\alpha)$,model) ) if $\mathrm{Op}(\alpha)=\wedge$ then return and $(\mathrm{PL}-\mathrm{TRUE}$ ? $(\operatorname{Arg} 1(\alpha)$,model $)$, PL-TRUE?(Arg2( $\alpha$ ),model))
etc.
(Sometimes called "recursion over syntax")

Today

## Course Info

## Warm-up exercise

Propositional Logic and Proofs
ML and 606/607 Intro
More Course Info


## What is ML?

## Machine Learning



| 607 |
| :---: |
| Computer |
| Science |

## ${ }^{607}$ Optimization ${ }^{606}$

Computer Science

## Why Computer Science for ML?

To best understand $A$ we need $B$
A B

## Why Computer Science for ML?

To best understand $A$ we need $B$


## Factor Graph Notation

- Variables:

$$
\mathcal{X}=\left\{X_{1}, \ldots, X_{i}, \ldots, X_{n}\right\}
$$

- Factors:

$$
\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \ldots
$$

where $\alpha, \beta, \gamma, \ldots \subseteq\{1, \ldots n\}$

$$
\begin{gathered}
\text { Joint Distribution } \\
p(\boldsymbol{x})=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(\boldsymbol{x}_{\boldsymbol{\alpha}}\right)
\end{gathered}
$$

## Factors are Tensors

- Factors:

$$
\psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}, \ldots
$$



Note: This is just motivation-
we'll cover the math need to we'll cover the math need to understand these topics later! an

## Inference

Given a factor graph, two common tasks ...

- Compute the most likely joint assignment, $\boldsymbol{x}^{*}=\operatorname{argmax}_{x} p(X=x)$
 $p\left(X_{i}=x_{i}\right)$ for each value $x_{i}$

Both consider all joint assignments.
Both are NP-Hard in general.


## Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings: $p(x)=\frac{1}{Z} \prod \psi_{\alpha}\left(x_{\alpha}\right)$


## Marginals by Sampling on Factor Graph

## The marginal $p\left(X_{i}=x_{i}\right)$ gives the probability that variable $\mathrm{X}_{i}$ takes value $\mathrm{x}_{\mathrm{i}}$ in a random sample



## Marginals by Sampling on Factor Graph

Estimate the

## Why Computer Science for ML?

## To best understand $A$ we need $B$

| A | B |
| :--- | :--- |
| Analysis of Exact | Computation |
| Inference in Graphical | - Computational Complexity <br> - Recursion; Dynamic Programming <br> Models |
| - Data Structures for ML Algorithms |  |

## Finite Difference Method

The centered finite difference approximation is:

$$
\begin{equation*}
\frac{\partial}{\partial \theta_{i}} J(\boldsymbol{\theta}) \approx \frac{\left(J\left(\boldsymbol{\theta}+\epsilon \cdot \boldsymbol{d}_{i}\right)-J\left(\boldsymbol{\theta}-\epsilon \cdot \boldsymbol{d}_{i}\right)\right)}{2 \epsilon} \tag{1}
\end{equation*}
$$

where $\boldsymbol{d}_{i}$ is a 1 -hot vector consisting of all zeros except for the $i$ th entry of $d_{i}$, which has value 1 .

## Notes:

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon



## Differentiation

## Chain Rule Quiz \#1:

Suppose $x=2$ and $z=3$, what are $d y / d x$ and $\mathrm{dy} / \mathrm{dz}$ for the function below?

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{\exp (x z)}
$$

## Finite <br> Difference

 Solution:
## Backpropagation

## Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(x)$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable $u_{i}$ with inputs $v_{1}, \ldots, v_{N}$
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

## Backward Computation

1. Initialize all partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/du
b. Increment $d y / d v_{j}$ by $\left(d y / d u_{i}\right)\left(d u_{i} / d v_{j}\right)$
(Choice of algorithm ensures computing ( $\begin{gathered}\text {, } \\ \text { Note: } \\ \text { N }\end{gathered}$ Note: This in the math need to
we'll cover we'll cover the the topics later!

## Why Computer Science for ML?

## To best understand $A$ we need $B$

| A | B |
| :--- | :--- |
| Analysis of Exact | Computation |
| Inference in Graphical | - Computational Complexity <br> - Recursion; Dynamic Programming <br> Models |
| - Data Structures for ML Algorithms |  |

## Support Vector Machines (SVMs)

Hard-margin SVM (Primal)

$$
\begin{aligned}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & y^{(i)}\left(\mathbf{w}^{T} \mathbf{x}^{(i)}+b\right) \geq 1, \quad \forall i=1, \ldots, N
\end{aligned}
$$

Hard-margin SVM (Lagrangian Dual)

$$
\begin{aligned}
& \quad \max _{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} \\
& \text { s.t. } \alpha_{i} \geq 0, \quad \forall i=1, \ldots, N \\
& \square
\end{aligned} \sum_{i=1}^{N} \alpha_{i} y^{(i)}=0
$$

- Instead of minimizing the primal, we can maximize the dual problem
- For the SVM, these two problems give the same answer (i.e. the minimum of one is the maximum of the other)
- Definition: support vectors are those which $a^{(i)} \neq 0$

Note: This is just motivation we'll cover the math need to we'll cover the math need later!
understand these topics later

## SVM QP




Note: This is just motivation we'll cover the math need laper!

## SVM QP



Note: This is just motivation we'll cover the math nee later!

## SVM QP



Note: This is just motivation we'll cover the math need laper!

## SVM QP




Note: This is just motivationwe'll cover the math nee later!

## SVM QP



Note: This is just motivation we'll cover the math need laper!

## SVM QP



Note: This is just motivation we'll cover the math need laper!

## Why Computer Science for ML?

## To best understand A we need B

| A | B |
| :--- | :--- |
| Analysis of Exact | Computation <br> Inference in Graphical <br> - Computational Complexity <br> - Recursion; Dynamic Programming <br> Models |
| - Data Structures for ML Algorithms |  |

The core content for this course is the computer science (Column B), but you will apply what you learn to real problems in machine learning (Column A)

## Al Definition by John McCarthy

What is artificial intelligence

- It is the science and engineering of making intelligent machines, especially intelligent computer programs

What is intelligence

- Intelligence is the computational part of the ability to achieve goals in the world



## Al Stack for CMU AI

"Al must understand the human needs and it must make smart design decisions based on that understanding"


## Al Stack for CMU AI

"Machine learning focuses on creating programs that learn from experience." using pattern- and trenddetection to help the computer make better decisions in similar, subsequent situations."


Artificial Intelligence vs Machine Learning?

Artificial Intelligence

Machine Learning

Deep Learning

A Brief History of Al


## A Brief History of AI



## A Brief History of AI

## 1940-1950: Early days

- 1943: McCulloch \& Pitts: Boolean circuit model of brain
- 1950: Turing's "Computing Machinery and Intelligence"


## 1950-70: Excitement: Look, Ma, no hands!

- 1950s: Early Al programs, including Samuel's checkers program, Newell \& Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted

1970-90: Knowledge-based approaches

- 1969-79: Early development of knowledge-based systems
- 1980-88: Expert systems industry booms
- 1988-93: Expert systems industry busts: "AI Winter"


## 1990—: Statistical approaches

- Resurgence of probability, focus on uncertainty
- General increase in technical depth
- Agents and learning systems... "Al Spring"?


## 2012-: Deep learning

- 2012: ImageNet \& AlexNet

[^0]

## ML Applications?



Games / Reasoning
3. Learning to beat the masters at board games



## Speech Recognition

## 1. Learning to recognize spoken words



Source: https://www.stonetemple.com/great-knowledge-boxshowdown/\#VoiceStudyResults

## Robotics

## 2. Learning to drive an autonomous vehicle



## Games / Reasoning

## 3. Learning to beat the masters at board games



## Computer Vision

## 4. Learning to recognize images



## Learning Theory

## - 5. In what cases and how well can we learn?

## Sample\%omplexity\%esults

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Fourscases\$ve\$carełabout...



| PAC stands for Probably | PAC la lares yields hypothesis $h$, which is |  |
| :--- | :--- | :--- |
|  | Approximately | approximately correct |
|  | with) high probability | $\operatorname{Pr}(R(h) \approx 0) \approx 1$ |

Def $=$ PAC Criterion

$$
\left.\overline{P_{r}(\forall h, \mid R(h)-\hat{R}}(h) \mid \leq \epsilon\right) \geqslant 1-\delta
$$

1. How many examples do we need to learn?
2. How do we quantify our ability to generalize to unseen data?
3. Which algorithms are better suited to specific learning settings?

## 10-606 and 10-607

- Mini Courses
- 10-606
- 10-607
- Intro ML Courses
- 10-315
- 10-301/601
- 10-701
- 10-715
- Prerequisites

Today

## Course Info

## Warm-up exercise

Propositional Logic and Proofs
ML and 606/607 Intro
More Course Info


## Course Information

Website: https://www.cs.cmu.edu/~10607

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication:
piazza
piazza.com
E-mail (if piazza doesn't work):
pvirtue@andrew.cmu.edu

## Course Information

## Lectures

- Lectures are recorded
- Shared with our course and ML course staff only
- Participation point earned by answering Piazza polls in lecture
- Quizzes will in lecture, announced two days ahead of time
- Slides will be posted


## Recitations

- Recommended attendance
- No plans to record at this point
- No participation points in recitation
- Recitation materials are in-scope for quizzes and exams


## Course Information

## Office Hours

- OH calendar on course website
- OH-by-appointment requests are certainly welcome


## Mental Health


[^0]:    Images: ai.berkeley.edu

