
As you walk in
Welcome!

1) Sit at a table next to another student

2) Make name plate

▪ Fold paper in half

▪ Write preferred name

▪ Below write you favorite fictional AI/robot

Images: ai.berkeley.edu

10-607
Computational
Foundations for
Machine Learning

Instructor: Pat Virtue

Today

Course Info

Warm-up exercise

Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info

Images: ai.berkeley.edu

Course Team
Instructor Teaching Assistants

Course Team
Students!!

Team Tips
Try not to act surprised

https://jvns.ca/blog/2017/04/27/no-feigning-surprise/

Team Tips
Try not to act surprised

https://jvns.ca/blog/2017/04/27/no-feigning-surprise/

Two-column Proof
Give an explicit justification for each statement based on previous
statements

Prove Socrates is mortal

Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Notation Alert!

Warm-up Exercise
Propositional logic inference rules

Warm-up Exercise
Use the propositional logic inference rules provided to prove:

𝑎 ∧ 𝑏 ⇒ (𝑏 ∧ 𝑎)

However, you cannot use the commutativity rule.

Write your proof in two-column format, i.e., give an explicit justification for
each statement based on previous statements

Warm-up Exercise
Use the propositional logic inference rules provided to prove:

𝑎 ∧ 𝑏 ⇒ (𝑏 ∧ 𝑎)

However, you cannot use the commutativity rule.

Write your proof in two-column format, i.e., give an explicit justification for
each statement based on previous statements

Proof by Cases

Today

Course Info

Warm-up exercise

Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info

Images: ai.berkeley.edu

Analysis: Perceptron

14
Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+

+

+

-

-

-

-

-





-
-

-

-

+

R

Analysis: Perceptron

15

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Analysis: Perceptron

16

++

+
+

+

+

+

-

-

-

-

-





-
-

-

-

+

R

Analysis: Perceptron

17

Proof of Perceptron Mistake Bound:
Part 1: for some A,

Cauchy-Schwartz inequality

Analysis: Perceptron

18

Proof of Perceptron Mistake Bound:
Part 2: for some B,

Analysis: Perceptron

19

Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

The total number of mistakes
must be less than this

Logic Language
Natural language?

Propositional logic
▪ Syntax: P  (Q  R); X1  (Raining  Sunny)

▪ Possible world: {P=true, Q=true, R=false, S=true} or 1101

▪ Semantics:    is true in a world iff is  true and  is true (etc.)

First-order logic
▪ Syntax: x y P(x,y)  Q(Joe,f(x))  f(x)=f(y)

▪ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; f(o1)=o1;
Joe=o3; etc.

▪ Semantics: () is true in a world if =oj and  holds for oj; etc.

Propositional Logic

Propositional Logic
Symbol:

▪ Variable that can be true or false

▪ We’ll try to use capital letters, e.g. A, B, P1,2

▪ Often include True and False

Operators:

▪  A: not A

▪ A  B: A and B (conjunction)

▪ A  B: A or B (disjunction) Note: this is not an “exclusive or”

▪ A  B: A implies B (implication). If A then B

▪ A  B: A if and only if B (biconditional)

Sentences

Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true

ii. 𝐴 ∨ 𝐶 is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about 𝐴 ∨ 𝐶

Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true

Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true

Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true

ii. 𝐴 ∨ 𝐶 is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about 𝐴 ∨ 𝐶

Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i. 𝐴 is guaranteed to be true

ii. 𝐴 is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about 𝐴

Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true

Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i. 𝐴 is guaranteed to be true

ii. 𝐴 is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about 𝐴

Propositional Logic
Symbol:

▪ Variable that can be true or false

▪ We’ll try to use capital letters, e.g. A, B, P1,2

▪ Often include True and False

Operators:

▪  A: not A

▪ A  B: A and B (conjunction)

▪ A  B: A or B (disjunction) Note: this is not an “exclusive or”

▪ A  B: A implies B (implication). If A then B

▪ A  B: A if and only if B (biconditional)

Sentences

Propositional Logic Syntax
Given: a set of proposition symbols {X1, X2, …, Xn}

▪ (we often add True and False for convenience)

Xi is a sentence

If  is a sentence then  is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then   is a sentence

If  and  are sentences then   is a sentence

And p.s. there are no other sentences!

𝛂 ∨ 𝛃 is inclusive or, not exclusive

Notes on Operators

Truth Tables
𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂 𝛃 𝛂  𝛃

F F F

F T F

T F F

T T T

𝛂 𝛃 𝛂  𝛃

F F F

F T T

T F T

T T T

𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to ¬𝛂 ∨ 𝛃

▪ Says who?

Notes on Operators

Truth Tables
𝛂⇒ 𝛃 is equivalent to ¬𝛂 ∨ 𝛃

𝛂 𝛃 𝛂⇒ 𝛃 ¬𝛂 ¬𝛂 ∨ 𝛃

F F T T T

F T T T T

T F F F F

T T T F T

𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to ¬𝛂 ∨ 𝛃

▪ Says who?

𝛂⇔ 𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)

▪ Prove it!

Notes on Operators

Truth Tables
𝛂⇔ 𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)

𝛂 𝛃 𝛂⇔ 𝛃 𝛂⇒ 𝛃 𝛃⇒ 𝛂 (𝛂⇒𝛃) ∧ (𝛃⇒𝛂)

F F T T T T

F T F T F F

T F F F T F

T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(𝛂⇔ 𝛃) ⇔ [(𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)]

Inference Rules
Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Unit Resolution

𝑎∨𝑏, ¬𝑏∨𝑐

𝑎∨𝑐

General Resolution

𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Notation Alert!

Propositional Logic

function PL-TRUE?(,model) returns true or false

if  is a symbol then return Lookup(, model)

if Op() =  then return not(PL-TRUE?(Arg1(),model))

if Op() =  then return and(PL-TRUE?(Arg1(),model),

PL-TRUE?(Arg2(),model))

etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

Today

Course Info

Warm-up exercise

Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info

Images: ai.berkeley.edu

Optimization

Computer
Science

Probability

Calculus

Linear Algebra

Statistics

What is ML?

Machine Learning

Optimization

Probability

Calculus

Linear Algebra

Computer
Science

Domain of
Interest

Measure
Theory

Statistics

Why Computer Science for ML?

To best understand A we need B

43

A B

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Why Computer Science for ML?

To best understand A we need B

44

A B

Analysis of Exact
Inference in Graphical
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Factor Graph Notation

45

• Variables:

• Factors:

Joint Distribution
X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

X1

ψ1

ψ2 X2

ψ3

X3

ψ5

X4

ψ7

ψ8 X5

ψ9

time likeflies an arrow

X6

ψ10

X8

X7

X9

ψ{1,8,9}

ψ1

ψ{1,8,9}

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ3

ψ2

ψ1

ψ{1,8,9}

ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ9ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ10

ψ8

ψ7ψ5ψ3

ψ2

ψ1

ψ{1,8,9}

ψ{3}ψ{2}

ψ{1,2}

ψ{1}

ψ{1,8,9}

ψ{2,7,8}

ψ{3,6,7}

ψ{2,3} ψ{3,4}

Factors are Tensors

46

• Factors:

v 3

n 4

p 0.1

d 0.1

v n p d

v 1 6 3 4

n 8 4 2 0.1

p 1 3 1 3

d 0.1 8 0 0

s vppp…

s 0 2 .3

vp 3 4 2

pp .1 2 1

…

s vppp…

s 0 2 .3

vp 3 4 2

pp .1 2 1

…

s vppp…

s 0 2 .3

vp 3 4 2

pp .1 2 1

…
s
vp
pp

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Inference

Given a factor graph, two common tasks …
– Compute the most likely joint assignment,

x* = argmaxx p(X=x)

– Compute the marginal distribution of variable Xi:
p(Xi=xi) for each value xi

Both consider all joint assignments.

Both are NP-Hard in general.

So, we turn to approximations.

47

p(Xi=xi) = sum of
p(X=x) over joint
assignments with
Xi=xi

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Marginals by Sampling on Factor Graph

48time likeflies an arrow

X1
ψ2 X2

ψ4 X3
ψ6 X4

ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Suppose we took many samples from the distribution over
taggings:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Marginals by Sampling on Factor Graph

49time likeflies an arrow

X1
ψ2 X2

ψ4 X3
ψ6 X4

ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

The marginal p(Xi = xi) gives the probability that variable Xi

takes value xi in a random sample

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Marginals by Sampling on Factor Graph

50time likeflies an arrow

X1
ψ2 X2

ψ4 X3
ψ6 X4

ψ8 X5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0X0

<START>

n v p d nSample 6:

v n v d nSample 5:

v n p d nSample 4:

n v p d nSample 3:

n n v d nSample 2:

n v p d nSample 1:

Estimate the
marginals as:

n 4/6

v 2/6

n 3/6

v 3/6

p 4/6

v 2/6 d 6/6 n 6/6

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Why Computer Science for ML?

To best understand A we need B

51

A B

Analysis of Exact
Inference in Graphical
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

Implementation
Design of a Deep
Learning Library

Programming & Efficiency
• Debugging for Machine Learning
• Efficient Implementation / Profiling ML Algorithms

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Finite Difference Method

Notes:
• Suffers from issues of

floating point precision, in
practice

• Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

52

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Chain Rule Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx
and dy/dz for the function below?

Differentiation

53

Finite

Difference

Solution:

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Backpropagation

54

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The

algorithm defines a directed acyclic graph, where each variable is a
node (i.e. the “computation graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Why Computer Science for ML?

To best understand A we need B

55

A B

Analysis of Exact
Inference in Graphical
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

Implementation
Design of a Deep
Learning Library

Programming & Efficiency
• Debugging for Machine Learning
• Efficient Implementation / Profiling ML Algorithms

Optimization for
Support Vector
Machines (SVMs)

Optimization
• Unconstrained Optimization
• Preconditioning
• Constrained Optimization

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)

56

• Instead of minimizing the primal, we can maximize the
dual problem

• For the SVM, these two problems give the same
answer (i.e. the minimum of one is the maximum of the
other)

• Definition: support vectors are those points x(i) for
which α(i) ≠ 0

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

SVM QP

57

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

SVM QP

58

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

SVM QP

59

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

SVM QP

60

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

SVM QP

61

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

SVM QP

62

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

Why Computer Science for ML?

To best understand A we need B

63

A B

Analysis of Exact
Inference in Graphical
Models

Computation
• Computational Complexity
• Recursion; Dynamic Programming
• Data Structures for ML Algorithms

Implementation
Design of a Deep
Learning Library

Programming & Efficiency
• Debugging for Machine Learning
• Efficient Implementation / Profiling ML Algorithms

Optimization for
Support Vector
Machines (SVMs)

Optimization
• Unconstrained Optimization
• Preconditioning
• Constrained Optimization

The core content for this course is the computer science (Column B), but you will
apply what you learn to real problems in machine learning (Column A)

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

AI Definition by John McCarthy

What is artificial intelligence

▪ It is the science and engineering of making
intelligent machines, especially intelligent
computer programs

What is intelligence

▪ Intelligence is the computational part of the
ability to achieve goals in the world

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

AI Stack for CMU AI
“AI must understand the human
needs and it must make smart
design decisions based on that
understanding”

A
IStack

https://ai.cs.cmu.edu/about

https://ai.cs.cmu.edu/about

AI Stack for CMU AI
“Machine learning focuses on
creating programs that learn from
experience.”

“It advances computing through
exposure to new scenarios,
testing and adaptation, while
using pattern- and trend-
detection to help the computer
make better decisions in similar,
subsequent situations.”

A
IStack

https://ai.cs.cmu.edu/about

https://ai.cs.cmu.edu/about

Artificial Intelligence vs Machine Learning?

Artificial Intelligence

Machine Learning

Deep Learning

A Brief History of AI

Images: ai.berkeley.edu

A Brief History of AI

https://books.google.com/ngrams

AI
Excitement!
1950-1970

Knowledge
Based

Systems
1970-1990

Statistical
Approaches

1990-

Deep
Learning Era

2012-

A Brief History of AI
1940-1950: Early days
▪ 1943: McCulloch & Pitts: Boolean circuit model of brain

▪ 1950: Turing's “Computing Machinery and Intelligence”

1950—70: Excitement: Look, Ma, no hands!
▪ 1950s: Early AI programs, including Samuel's checkers program, Newell &

Simon's Logic Theorist, Gelernter's Geometry Engine

▪ 1956: Dartmouth meeting: “Artificial Intelligence” adopted

1970—90: Knowledge-based approaches
▪ 1969—79: Early development of knowledge-based systems

▪ 1980—88: Expert systems industry booms

▪ 1988—93: Expert systems industry busts: “AI Winter”

1990—: Statistical approaches
▪ Resurgence of probability, focus on uncertainty

▪ General increase in technical depth

▪ Agents and learning systems… “AI Spring”?

2012—: Deep learning
▪ 2012: ImageNet & AlexNet

Images: ai.berkeley.edu

ML Applications?

71Slide credit: CMU MLD Matt Gormley

Speech Recognition

1. Learning to recognize spoken words

72

“…the SPHINX system (e.g.

Lee 1989) learns speaker-

specific strategies for

recognizing the primitive

sounds (phonemes) and

words from the observed

speech signal…neural

network methods…hidden

Markov models…”

(Mitchell, 1997)

THEN

Source: https://www.stonetemple.com/great-knowledge-box-
showdown/#VoiceStudyResults

NOW

Slide credit: CMU MLD Matt Gormley

Robotics

2. Learning to drive an autonomous vehicle

73

“…the ALVINN system

(Pomerleau 1989) has used

its learned strategies to drive

unassisted at 70 miles per

hour for 90 miles on public

highways among other

cars…”

(Mitchell, 1997)

THEN

waymo.com

NOW

https://www.geek.com/wp-
content/uploads/2016/03/uber.jpg

NOW

Slide credit: CMU MLD Matt Gormley

Games / Reasoning

3. Learning to beat the masters at board games

74

“…the world’s top computer

program for backgammon,

TD-GAMMON (Tesauro,

1992, 1995), learned its

strategy by playing over one

million practice games

against itself…”

(Mitchell, 1997)

THEN NOW

Slide credit: CMU MLD Matt Gormley

Computer Vision

4. Learning to recognize images

75

“…The recognizer is a
convolution network that
can be spatially replicated.
From the network output, a
hidden Markov model
produces word scores. The
entire system is globally
trained to minimize word-
level errors.…”

(LeCun et al., 1995)

THEN NOW

Images from https://blog.openai.com/generative-models/Slide credit: CMU MLD Matt Gormley

Learning Theory

• 5. In what cases and how well can we learn?

76

Sample%Complexity%Results

34

Realizable Agnostic

Four$Cases$we$care$about…

1. How many examples do we need
to learn?

2. How do we quantify our ability to
generalize to unseen data?

3. Which algorithms are better
suited to specific learning
settings?

S
lid

e
 c

re
d

it
: C

M
U

 M
LD

 M
at

t
G

o
rm

le
y

10-606 and 10-607
▪ Mini Courses

▪ 10-606

▪ 10-607

▪ Intro ML Courses

▪ 10-315

▪ 10-301/601

▪ 10-701

▪ 10-715

▪ Prerequisites

Today

Course Info

Warm-up exercise

Propositional Logic and Proofs

ML and 606/607 Intro

More Course Info

Images: ai.berkeley.edu

Course Information
Website: https://www.cs.cmu.edu/~10607

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication:

piazza.com

E-mail (if piazza doesn’t work):

pvirtue@andrew.cmu.edu

https://www.cs.cmu.edu/~10607
http://canvas.cmu.edu/
http://gradescope.com/
https://piazza.com/cmu/fall2021/10607
mailto:pvirtue@cmu.edu

Course Information
Lectures

▪ Lectures are recorded

▪ Shared with our course and ML course staff only

▪ Participation point earned by answering Piazza polls in lecture

▪ Quizzes will in lecture, announced two days ahead of time

▪ Slides will be posted

Recitations

▪ Recommended attendance

▪ No plans to record at this point

▪ No participation points in recitation

▪ Recitation materials are in-scope for quizzes and exams

Course Information
Office Hours

▪ OH calendar on course website

▪ OH-by-appointment requests are certainly welcome

Mental Health

