As you walk in

Welcome!

1) Sit at a table next to another student

2) Make name plate
" Fold paper in half
= Write preferred name
= Below write you favorite fictional Al/robot

Images: ai.berkeley.edu

10-607
Computational
Foundations for
Machine Learning

Instructor: Pat Virtue

Today

Course Info

Warm-up exercise
Propositional Logic and Proofs
ML and 606/607 Intro

More Course Info

Images: ai.berkeley.edu

Course Team

Instructor Teaching Assistants

Kellen
Gibson Char

kagibson ichar

Course Team

Students!!

Team T|ps Here's o Hm‘ng that happens a lot:

Try not to act surprised you don® know .
Y P ? @‘I’ bash is?!

|
“ ooboh I guess T
was supposed
to know +hat?

https://jvns.ca/blog/2017/04/27 /no-feigning-surprise/

Team Tips Here's a cool simple trick |

Try not to act surprised Don™ act sorpeisect when someone doesn't
know .Some‘('lfn‘ng yOu 'Hf\aughf‘ -H'\eg knew

(even % you are a liHle surprised |)
T+ doesn't help.

ﬂnen You 3€+ t+o have fun +imes (ike this:
what's Jet's
t’nc{yp‘}?

And i geJrs easier with prac+f€€’ ! L

OH BOY I get
to tell someone
obout this very
COO[kogYYY

https://jvns.ca/blog/2017/04/27 /no-feigning-surprise/

Two-column Proof

Give an explicit justification for each statement based on previous
statements

Prove Socrates is mortal

Notation Alert!

Modus Ponens
a=>p, «

B

Warm-up Exercise

Propositional logic inference rules

modus ponens: from premesis p and p = g, conclude g

A introduction: if we separately prove p and g, then that constitutes a proof of p /\ q.

A elimination: from p /\ g we can conclude either of p and g separately.

V introduction: from p we can conclude p V g for any gq.

V elimination (also called proof by cases): if we know p V g (the cases) and we have both p V 7 and p V r (the case-
specific proofs), then we can conclude 7.

T introduction: we can conclude T from no assumptions.

F elimination: from F we can conclude an arbitrary formula p.

Associativity: both A and \/ are associative: it doesn't matter how we parenthesize an expression likea A b A c A d.
(So in fact we often just leave the parentheses out in such cases. But when having \V and A together, it's a good idea to
keep the parentheses.)

Distributivity: A and V distribute over one another; for example, a VV (b A ¢) is equivalentto (a VV b) A (a V ¢) and

a /A (bVc)isequivalentto (a A b) V (a A c).

Commutativity: both A and V are commutative (symmetric in the order of their arguments), so we can re-order their
arguments however we please. For example, a A b A ¢ is equivalenttoc A b A a.

Warm-up Exercise

Use the propositional logic inference rules provided to prove:
(an b) = (bAa)

However, you cannot use the commutativity rule.

Write your proof in two-column format, i.e., give an explicit justification for
each statement based on previous statements

Warm-up Exercise

Use the propositional logic inference rules provided to prove:
(an b) = (bAa)

However, you cannot use the commutativity rule.

Write your proof in two-column format, i.e., give an explicit justification for
each statement based on previous statements

Proof by Cases

Today

Propositional Logic and Proofs

Images: ai.berkeley.edu

Analysis: Perceptron

Figure from Nina Balcan

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

Logic Language

Natural language?

Propositional logic

= Syntax: P v (—Q A R); X, < (Raining = Sunny)

= Possible world: {P=true, Q=true, R=false, S=true} or 1101

* Semantics: a A [is true in a world iff is o true and [3 is true (etc.)

First-order logic
= Syntax: Vx dy P(x,y) A =Q(Joe,f(x)) = f(x)=f(y)

= Possible world: Objects o,, 0,, 05; P holds for <o,,0,>; Q holds for <o0,>; f(o,)=0;
Joe=0,; etc.

= Semantics: ¢(o) is true in a world if 6=0,and ¢ holds for o;; etc.

Propositional Logic

Propositional Logic

Symbol:

= Variable that can be true or false

= We’ll try to use capital letters, e.g. A, B, P, ,
= Ofteninclude True and False

Operators:

= —A:notA

= A AB:Aand B (conjunction)

= A v B:AorB(disjunction) Note: this is not an “exclusive or”
" A= B:Aimplies B (implication). If A then B
= A< B:Aifand only if B (biconditional)
Sentences

Poll 1

If we know that AV B and =B V C are true,
what do we know about AV C?

i. AV C isguaranteed to be true
ii. AV C isguaranteed to be false

iii. We don’t have enough information to say anything
definitive about AV C

Poll 1

If we know that AV B and =B V C are true, what do we know about AV C?

A B C AVB —-BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true

Poll 1

If we know that AV B and =B V C are true, what do we know about AV C?

A B C AVB —-BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true

Poll 1

If we know that AV B and =B V C are true,
what do we know about AV C?

i. AVC isguaranteed to be true

Poll 2

If we know that AV B and =B V C are true,
what do we know about A7

I. A is guaranteed to be true
ii. A is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about A

Poll 2

If we know that AV B and =B V C are true, what do we know about 47

A B C AVB —-BvC AV C
false false false false true false
false false true false true true
false true false true false false
false true true true true true
true false false true true true
true false true true true true
true true false true false true
true true true true true true

Poll 2

If we know that AV B and =B V C are true,
what do we know about A7

iii. We don’t have enough information to say anything
definitive about A

Propositional Logic

Symbol:

= Variable that can be true or false

= We’ll try to use capital letters, e.g. A, B, P, ,
= Ofteninclude True and False

Operators:

= —A:notA

= A AB:Aand B (conjunction)

= A v B:AorB(disjunction) Note: this is not an “exclusive or”
" A= B:Aimplies B (implication). If A then B
= A< B:Aifand only if B (biconditional)
Sentences

Propositional Logic Syntax

Given: a set of proposition symbols {X;, X,, ..., X..}
= (we often add True and False for convenience)

X;is a sentence

If oL is a sentence then —a is a sentence

If oo and [3 are sentences then o A B is a sentence
If o and [3 are sentences then o, v 3 is a sentence
If oo and 3 are sentences then oo = [3 is a sentence

If oo and 3 are sentences then o < 3 is a sentence
And p.s. there are no other sentences!

Notes on Operators

o V 3 isinclusive or, not exclusive

Truth Tables

o V @ is inclusive or, not exclusive

av

o s oanP
F F F
F T F
T F F
T T T

— || 4 | ™

Notes on Operators

o V 3 isinclusive or, not exclusive

o = 3 is equivalentto ~a Vv 3
= Says who?

Truth Tables

o = 3 is equivalentto ~a Vv f3

o B = ml oV 3
F F T T T
F T T T T
T F F F F
T T T F T

Notes on Operators

o V 3 isinclusive or, not exclusive

o = 3 is equivalentto ~a Vv 3
= Says who?

o < Bis equivalentto (a= B) A (B = «)
= Prove it!

Truth Tables

o < Bisequivalentto(a= B) A (B = a)

a BplaecB| a=8 B=>a| (a=B) A (B=a)
F F T T T T
F T F T F F
T F F F T F
T | T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(a=B)s[(a=p)AB= o

Inference Rules

Modus Ponens Notation Alert!
a=>p, «o

B

Unit Resolution
avVvb, —bVc

avc

General Resolution
a,Vv---vamjmVvb, -—bVcqV---Vcp

a,V---VamVciV--Vey

Propositional Logic

Check if sentence is true in given model
In other words, does the model satisfy the sentence?

function PL-TRUE?(a,model) returns true or false
if ot is @ symbol then return Lookup(o, model)
if Op(at) = — then return not(PL-TRUE?(Argl(o),model))
if Op(at) = A then return and(PL-TRUE?(Argl(ca),model),
PL-TRUE?(Arg2(oa.),model))
etc.

(Sometimes called “recursion over syntax”)

Today

ML and 606/607 Intro

Images: ai.berkeley.edu

What is ML?

Why Computer Science for ML?

To bestunderstand A weneed B

Slide credit: CMU MLD Matt Gormley

£
w

Why Computer Science for ML?

To bestunderstand A weneed B

Analysis of Exact Computation
Inference in Graphical + Computational Complexity
Models * Recursion; Dynamic Programming

» Data Structures for ML Algorithms

Slide credit: CMU MLD Matt Gormley

44

Factor Graph Notation

e Variables:
X = {)(1?...,)(h...

* Factors:

Vo, Vg, Yy, - -

where v, 3) Vyoor © {L T ﬁ}

Slide credit: CMU MLD Matt Gormley

Joint Distribution

p(@) = - [] Yola)

hy e’\\' cover the pics |ater!

d these 1O

time und erstan an ari

45

Factors are Tensors

slo1213)
pp 1121

e Factors: s

Yo, W3,y o

Slide credit: CMU MLD Matt Gormley

Inference

Given a factor graph, two common tasks ...
— Compute the most likely joint assignment,

X" = argmax, p(X=x)

* — Compute the marginal distribution of variable X::

p(X;=x;) for each value x;

Both consider all joint assignments.

Both are NP-Hard in general.

So, we turn to approximations.

AN

pP(Xi=x;) = sum of

P(X=X) over jqi

Slide credit: CMU MLD Matt Gormley

<

Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over
taggings: s =[] va(za)

=

E
>

START>

Sample 1: ‘ ‘ @ ‘
Sample 2: ‘ ‘ ‘ ‘
Sample 3: ‘ ‘ @ ‘
Sample 4: ‘ ‘ @ ‘
Sample 5: ‘ ‘ ‘ ‘
Sample 6: ‘ ‘ @ ‘ ‘

Y

flies like

HBE
@
S |

5

dit: CMU MLD Matt Gormley

Slide cre

<

Marginals by Sampling on Factor Graph

The marginal p(X; = X;) gives the probability that variable X
takes value X; in a random sample

=

E
>

START>

Sample 1: ‘ ‘ @ ‘
Sample 2: ‘ ‘ ‘ ‘
Sample 3: ‘ ‘ @ ‘
Sample 4: ‘ ‘ @ ‘
Sample 5: ‘ ‘ ‘ ‘
Sample 6: ‘ ‘ @ ‘ ‘

Y

flies like

HBE
@
S |

5

dit: CMU MLD Matt Gormley

Slide cre

Marginals by

Estimate the
marginals as:

Sample 1:
Sample 2:
Sample 3:
Sample 4:
Sample 5:

Sample 6:

<START>

time

N

ampling on Factor Graph

Yo

)]

=

HHO00O®

=
A~
(0]

Slide credit: CMU MLD Matt Gormley

50

Why Computer Science for ML?

To bestunderstand A weneed B

Analysis of Exact Computation
Inference in Graphical + Computational Complexity
Models * Recursion; Dynamic Programming
» Data Structures for ML Algorithms
Implementation Programming & Efficiency
Design of a Deep * Debugging for Machine Learning
Learning Library » Efficient Implementation / Profiling ML Algorithms

Slide credit: CMU MLD Matt Gormley

Finite Difference Method

The centered finite difference approximation is:

9 (JO+¢c-d;)—JO—¢c-dy))

a6, 7 (0) = e (1)

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1. N

Notes:

» Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

understan

d theese topics later!

Slide credit: CMU MLD Matt Gormley

Differentiation

Chain Rule Quiz #1:

Suppose x =2 and z = 3, what are dy/dx
and dy/dz for the function below?

— oxn(ny) 4 T - sin(log(x))
y = explaz) - log(z) exp(zz)

Finite from math import *
Define function
) def f(x, ZJ:
leference return exp(x*z) + x*z/log(x) + sin{log(x)) / exp(x*z)
Inputs -
(] % =2 Z =3, 5 = 1le-8
Solution: .

Finite difference check ivation —
i S e s L e moftiva
dydx = (f(xve, 2) - f(x-e, 2)) / (2* ote: This 1S just need to

: e !
print "dydx =", dydx "\ cover ics later.
print “dydz =", dydz l\’,‘\\f\ederstand these top\C

Slide credit: CMU MLD Matt Gormley

Training Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Slide credit: CMU MLD Matt Gormley

U1
S

Why Computer Science for ML?

To bestunderstand A weneed B

Analysis of Exact
Inference in Graphical
Models

Implementation
Design of a Deep
Learning Library

Optimization for
Support Vector
Machines (SVMs)

Computation

* Computational Complexity

* Recursion; Dynamic Programming
» Data Structures for ML Algorithms

Programming & Efficiency
* Debugging for Machine Learning
* Efficient Implementation / Profiling ML Algorithms

Optimization

* Unconstrained Optimization
* Preconditioning

* (Constrained Optimization

Support Vector Machines (SVMs)

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)
1 N 1 X NI .
migl §||w||§ max Z & = 5 Z Zaiajy(“)y(”x(“) . x)
e _ i=1 i=1 j=1
s.t. y(z)(WTX(?’)'Fb) > 1, V'L:].,,N s.t. «; 20, VZ=1,,N

N
Z sz'y(i) =0
=

Slide credit: CMU MLD Matt Gormley

U1
(o)}

., SVM Quadratic Program

IR

16, 000

SVM QP

.000

N \ 2.0-
<0 9700
(%

N 1.5 -
1.0 -
0.5 -
0.0 -

—05 -

—=1.0 -

Classification with SVM (w=[-2.00, 3.00])

Slide credit: CMU MLD Matt Gormley

., SVM Quadratic Program

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

—0.5 -

—=1.0 -

—1.5-
-15

Classification with SVM (w=[0.37, 1.51])

-1.0 -0.5 0.0 0.5 1.0

CMU MLD Matt Gormley

Slide credit

Ul
oo

., SVM Quadratic Program

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

—0.5 -

—=1.0 -

—1.5-
-15

Classification with SVM (w=[0.62, 1.58])

-1.0 -0.5 0.0 0.5 1.0

CMU MLD Matt Gormley

Slide credit

59

2 -

., SVM Quadratic Program

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

—0.5 -

—=1.0 -

—1.5-
-15

Classification with SVM (w=[1.04, 1.77])

-1.0 -0.5 0.0 0.5 1.0

CMU MLD Matt Gormley

Slide credit

2 -

., SVM Quadratic Program

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

—0.5 -

—=1.0 -

—1.5-
-15

Classification with SVM (w=[1.28, 1.62])

-1.0 -0.5 0.0 0.5 1.0

CMU MLD Matt Gormley

Slide credit

2 -

., SVM Quadratic Program

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

—0.5 -

—=1.0 -

—1.5-
-15

Classification with SVM (w=[1.28, 1.60])

-1.0 -0.5 0.0 0.5 1.0

CMU MLD Matt Gormley

Slide credit

Why Computer Science for ML?

To bestunderstand A weneed B

Analysis of Exact Computation
Inference in Graphical + Computational Complexity
Models * Recursion; Dynamic Programming
» Data Structures for ML Algorithms
Implementation Programming & Efficiency
Design of a Deep * Debugging for Machine Learning
Learning Library * Efficient Implementation / Profiling ML Algorithms
Optimization for Optimization
Support Vector * Unconstrained Optimization
Machines (SVMs) * Preconditioning

* (Constrained Optimization

The core content for this course is the computer science (Column B), but you will
apply what you learn to real problems in machine learning (Column A)

Al Definition by John McCarthy

What is artificial intelligence

" |t is the science and engineering of making
intelligent machines, especially intelligent
computer programs

What is intelligence

" I[ntelligence is the computational part of the
ability to achieve goals in the world

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

Al Stack for CMU Al

“Al must understand the human
needs and it must make smart

design decisions based on that Planmng&Actmg
understanding”

Decision Support
I\/Iodehng

I\/Iachme Learnmg

Massive Data I\/Ianagement

Dewces

Computmg

https://ai.cs.cmu.edu/about

AJE1S IV

https://ai.cs.cmu.edu/about

Al Stack for CMU Al

“Machine learning focuses on
creating programs that learn from
experience.”

“It advances computing through
exposure to new scenarios,
testing and adaptation, while
using pattern- and trend-
detection to help the computer
make better decisions in similar,
subsequent situations.”

Human Al Interaction

Planmng & Acting

Decision Support

I\/Iodehng

I\/Iachme Learnmg

Massive Data I\/Ianagement

Dewces

Computmg

https://ai.cs.cmu.edu/about

AJE1S |V

https://ai.cs.cmu.edu/about

Artificial Intelligence vs Machine Learning?

Artificial Intelligence

Machine Learning

A Brief History of Al

Images: ai.berkeley.edu

A Brief History of Al

Knowledge Statistical Deep
Al Based Approaches Learning Era
Excitement! Systems 1990- 2012-
1950-1970 1970-1990
0.000400% -
A A A
0.000350% — r h 4 ¥ A

machine learning

0.000300% -
0.000250% -
0.000200% - artificial intelligence
0.000150% - deep learning
0.000100% -

0.000050% -

formal logic

0.000000% | [
1940 1950 1960 1970 1980 1990 2000 2010

https://books.google.com/ngrams

A Brief History of Al

1940-1950: Early days
= 1943: McCulloch & Pitts: Boolean circuit model of brain
= 1950: Turing's “Computing Machinery and Intelligence”

1950—70: Excitement: Look, Ma, no hands!

= 1950s: Early Al programs, including Samuel's checkers program, Newell &
Simon's Logic Theorist, Gelernter's Geometry Engine

= 1956: Dartmouth meeting: “Artificial Intelligence” adopted

1970—90: Knowledge-based approaches

= 1969—79: Early development of knowledge-based systems
= 1980—88: Expert systems industry booms

= 1988—93: Expert systems industry busts: “Al Winter”

1990—: Statistical approaches

= Resurgence of probability, focus on uncertainty
= General increase in technical depth

= Agents and learning systems... “Al Spring”?

2012—: Deep learning
= 2012: ImageNet & AlexNet

Images: ai.berkeley.edu

ML Applications?

Speech Recognition

1. Learning to recognize spoken words
THEN
“...the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal...neural
network methods. ..hidden
Markov models...”

(Mitchell, 1997)

om/great-knowledge-box-

Robotics

2. Learning to drive an autonomous vehicle
THEN

“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars...”

(Mitchell, 1997)

waymo.com

Games [Reasoning

3. Learning to beat the masters at board games
THEN

“...the world’s top computer
program for backgammon,
TD-GAMMON (
1992, 1995), learn
strategy by playing over one
million practice games
against itself...”

(Mitchell, 1997)

Computer Vision

4. Learning to recognize images

Learning Theory

* 5. In what cases and how well can we learn?

THEN Now

“...The recognizer is a
convolution network that Revolution of Deoth
can be spatially replicated.]

From the network output, a
hidden Markov model
produces word scores. The
entire system is globally
trained to minimize word-
level errors....”

-

(LeCun et al., 1995)

Research

Sample Complexity Results
Definition .. The sample complesity of alearming sgorthm sthe
e of exaies eapived t achives sbiTarty ol o (wkh O Tt Err
1554t 13 the opeiml Rypoehes) whth hgh peckatsity (14 s
1)

Four Cases we carg about..
Reaiible f— D Taw G

Finite [

Infinite (3] 25
o

?.;..‘ o b B b e T R7
1R e el Y= P
e ‘F T
Carsect

o \y_@'% P(RWz0) 21
Db AL Crlrn

Byl Ry Rel<&y > -5

RG) = ﬂ,")(‘ﬂ # () | o “-:luv-

ESRTEE R =B, (e # bee) S-{af W

Tak ekl kY [Tl B bt Erae)

(et empitacl eaky

& e

fnn, opoble
= B AP

1. How many examples do we need
to learn?

2. How do we quantify our ability to
generalize to unseen data?

3. Whichalgerithms are better

suited to specific leaming
settings?

Slide credit: CMU MLD Matt Gormley

71

Speech Recognition

1. Learning to recognize spoken words

THEN

“...the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal...neural
network methods...hidden
Markov models...”

(Mitchell, 1997)

Slide credit: CMU MED Matt Gormley

NOW

® O

Google Now Siri Cortana

Source: https://www.stonetemple.com/great-knowledge-box-
showdown/#VoiceStudyResults

72

Robotics

2. Learning to drive an autonomous vehicle
NOW

THEN

“...the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars...”

(Mitchell, 1997)

Slide credit: CMU MED Matt Gormley

| https:/www. géék.co/-
content/uploads/2016/03/uber.jpg

/3

Games [Reasoning

3. Learning to beat the masters at board games
NOW

THEN

“...the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself...”

(Mitchell, 1997)

Slide credit: CMU MED Matt Gormley

¢ LEE SEDOL
« 00:07:00

74

Computer Vision

4. Learning to recognize images

THEN NOW

‘...The recognizer is a Research
convolution network that Revolution of Depth
can be spatially replicated. ,15%'}"?’5,
From the network output, a
hidden Markov model b
produces word scores. The [2\2'::“ i Jl 1
entire system is globally “’ ll 8 layers slaiers lshauow.
trained to minimize word- Ty, e ILSVRC1_3_—1L_SVRC;2“|;,5 e
level errors.. iy Cogey ST el

,’sfo,;*if,m“ e *W’khm;h recognizer This archiecure ICCV S ImageNet Classification top-5 error (%)

= o

(LeCun et al., 1995)

Slide credit: CMU MLD Matt Gormley Images from https://blog.openai. com/generatlve models/

Learning Theory

* 5.In what cases and how well can we learn?

SampleComplexity/Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).

FourLasesivekare@about...

Finite ||

Infinite |H|

Realizable

Agnostic

N > L[log(|H|) + log(})] labeled ex-
amples are sufficient so that with prob-
ability (1 — &) all h € H with R(h) = €
have R(h) = 0.

N = 3k [log(|#]) +log,)] la-
beled examples are sufﬁuent s0
that with probability (1 — §) for
all b € H we have that |R(h) —
R(h)| < e

= O(% {VC(H)lng(%) + log(%)]) la-
beled examples are sufficient so that
with probability (1 — 4) all h € H with
R(R) > e have fi(h) > 0.

N = O(Z% [VC(H) + log(})]) la-
beled examples are sufficient so
that with probability (1 — 4) for
all h € H we have that |R(h) —
R(h)| < e

[PA Ly

Q-
A:

PAC

Db =

C;M INERAnN P(L
Ves !
shds £ RL:L[7

A mxwleb
C.Or)ec"

'PAC. Cﬁ "Qﬁ‘c\n

v Ao S RGY?

?AC, /&’AMU‘ ue\és 7(9

1 Xiun Je | Cormd-

Bk, [RO-RW|£E) =

WT)?& *«g Elﬂ%_f‘z

Q) Tree Eror (qlcq. ex?eckc\. rfs/c) (abn. Gemnlization Emr)
RG‘) = ’Px"'f*(x>(c*()() # M(X)) NEREE W’Ay_(wlmw-\ .

@TF-"\ Etror (Gl(ﬂ ewf.‘nu' l\RLﬁ

RG=7P

N

o‘(’(.',s& ’4, L)L\'(.L s
RW xo
itk hpn pubebill, Pr(RUIEO) 21

\ s

sl c*(x) # ho)) S<0x .. 3
S E AP N b

e ?’. 1 (y(‘) # W(x?)

1. How many examples do we need
to learn?

2. How do we quantify our ability to
generalize to unseen data?
Which algorithms are better
suited to specific learning
settings?

Slide credit: CMU MLD Matt Gormley

N
(o)}

10-606 and 10-607

Mini Courses

= 10-606

= 10-607

Intro ML Courses
=]10-315

= 10-301/601

=]10-701

= 10-715

Prerequisites

Today

More Course Info

Images: ai.berkeley.edu

Course Information

Website: https://www.cs.cmu.edu/~10607

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication:
plazza.com

E-mail (if piazza doesn’t work):
pvirtue@andrew.cmu.edu

AL
b 4
L PN 4

canvas

all gradescope

https://www.cs.cmu.edu/~10607
http://canvas.cmu.edu/
http://gradescope.com/
https://piazza.com/cmu/fall2021/10607
mailto:pvirtue@cmu.edu

Course Information

Lectures

Lectures are recorded
= Shared with our course and ML course staff only

Participation point earned by answering Piazza polls in lecture
Quizzes will in lecture, announced two days ahead of time
Slides will be posted

Recitations

Recommended attendance

No plans to record at this point

No participation points in recitation

Recitation materials are in-scope for quizzes and exams

Course Information

Office Hours
= OH calendar on course website
= OH-by-appointment requests are certainly welcome

Mental Health

