
Probability

Many events can't be predicted with certainty. We use the tools of probability to
quantify how likely they are to happen. To reason about probabilities, we'll use a data
type called a probability space. We'll build up this data type over the course of this set
of lecture notes.

Atomic events

We start from a universe or sample space, a set  of mutually exclusive and exhaustive
possible outcomes. The elements of  are called simple or atomic events. Often these
simple events will be interpretable: e.g., which face of a die lands on top when we roll it
(like this: ⚄), or which card we draw from a deck (like this: 7♠). We assign probabilities
to atomic events:  is the probability that  will occur.

For our purposes, it's best to think of  as finite. If we want to deal with continuous outcomes, a
good way to think about them is to discretize: pretend that there are a very large but finite
number of events, spaced out so that there is always one very close to any possible continuous
outcome. Since this viewpoint is for understanding rather than computation, there's no limit on
how big we can make : e.g., we could have one event for every 64-bit floating point number, or
even every tuple of 100 64-bit numbers. Discretization is actually better in many cases than
trying to deal directly with continuous outcomes: probability on continuous spaces holds a lot of
mathematical traps, such as hidden infinities and counterintuitive behaviors.

We'll take the viewpoint that probabilities are subjective: I can assign any probabilities I
want, so long as I follow the rules described here for manipulating them. And I can
assign probabilities to any outcomes that I can imagine measuring, no matter whether I
think of the process that determines the outcomes as being random.

What does the statement  mean? One common interpretation is that, if I reset the world
and ran it forward many times, measuring whether event  happened in each trial, I'd see it
happen in a third of them. This interpretation makes sense for something like a biased coin that
we can flip many times. But it is not necessarily helpful in general: first, it may not really be
possible to reset the world, even approximately. Second, we might want to assign a probability to
an event that is deterministic but unknown to us, so that repeated trials don't yield independent
measurements. Instead, in such cases we interpret the statement as a measure of my subjective
confidence in : I'd be willing to take  odds in a bet on , which is the same odds that would
have me break even if betting on a biased coin with .
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Probabilities are always nonnegative; an impossible event has probability 0. Probabilities
always sum to 1 over the universe:

That means that each individual event has probability at most 1. An event with
probability 1 is certain to happen, since the sum-to-1 rule means that all other events
must have probability zero.

In continuous spaces, we measure probability density instead of probability. Probability density
differs from probability in a number of important ways; see below for more information.

Compound events

A compound event is a subset of the universe, . The probability of  is the sum of
the probabilities of atomic events in :

The sum-to-1 rule means that we are certain to get some event in the universe:

We'll sometimes abuse notation and conflate  with : that is, we'll interchange an
atomic event and a compound event with only one element.

Since events are sets, we can combine them using set operations: given events  and 
,

 means that we get some atomic event in the union of  and ; that is, 
is the event that either  or  happens

 is the event that both  and  happen

 is the event that  happens but  does not happen

 is the event that  does not happen

As you can see from the examples above, set operations correspond to logical
combinations of events. So we'll sometimes use logical notation as well:
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 or  is the same as 

We can make the correspondence with logical notation precise:

Logical predicates correspond to events. For example, in our die-roll example, the
predicate  corresponds to the set of even-valued outcomes.

Logical functions can be used to build predicates. For example, if we have a
function  that extracts the suit of a card, then the expression 
corresponds to the set , or

Note that we have omitted the argument  to the function : by convention, the
atomic event is implicitly an argument of every function or predicate.

General expressions correspond to the set of atomic events that satisfy them. For
example, the expression  corresponds to the set

which is .

Exercise: what is the set notation for the logical event ?

Probability density

If we want to write a probability distribution over a continuous set such as , we will
have infinitely many atomic events: one for each real number. We can't assign positive
probability to this many events, since the total probability would be  instead of . So
instead we define a new function , and say that the probability of any event 

 is the integral

The function  is called a probability density, and it obeys many (but not all) of the same
rules that a probability does. For example, it must be nonnegative, and the integral over
the entire universe must be 1. It also follows the rule that we'll define below for
computing conditional distributions (i.e., Bayes' rule).
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But it's important to remember that a probability density is not a probability. For
example, a density can be greater than 1, so long as there's no set  such that 

. And, the probability of an atomic event  is not equal to ; as noted
above, it's typically zero, so that the probability of  is usually not what we want to ask
for. Instead, we might ask for the probability that our random variable will fall in a small
interval of length  centered at ; this is approximately .

We'll skip over most of the math behind continuous probability distributions. If you're
interested, this math is interesting and sometimes surprising; a good text is Billingsley.

Venn diagrams

We can visualize our universe and the probabilities of various events using a Venn
diagram: we picture the universe as a large rectangle, and events as shapes that are
subsets of the rectangle. Every point in the rectangle corresponds to a different atomic
event. The overlap between shapes tells us which compound events intersect, that is,
which can occur simultaneously.

For example, if we are picking a random food to eat for dinner, the universe is the set of
all possible foods we might pick, corresponding to the whole rectangle. The event that
we pick something yummy is the larger circle, and the event that we pick a vegetable is
the smaller circle. The overlap between the two circles is the set of yummy vegetables,
which includes the atomic event  — at least, according to your professor. The
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area outside the two circles corresponds to the set of outcomes which are neither
yummy nor vegetables.

Often we try to make the areas of shapes within the Venn diagram proportional to their
probabilities. But sometimes we can't or don't want to — for example, if we don't know
those probabilities yet.

Exercise: where in the above diagram does the event that we pick pizza fit? What
about Brussels sprouts? What about escargot? (We realize that the answers are
subjective.)

Uniform distributions

If all atomic events are equally likely, our probability space represents a uniform
distribution. This distribution is often a default choice for an initial model. But we also
often need nonuniform distributions, those in which different atomic events have
different probabilities.

For example, a fair die is modeled well by a uniform distribution: 
. But a weighted die needs a non-uniform

distribution. If rolling a 6 is four times as likely as any other outcome, we have 
 and .

Experiments

We can use probabilities to describe experiments that we are thinking of conducting. We
make a probability space that describes what we think might happen; atomic events
represent possible outcomes of the experiment, and the universe contains all possible
outcomes.

For example, suppose we flip a coin twice. We can make a probability space that says
that each sequence of heads and tails is equally likely:

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 6
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Here the universe is , and we've assigned probability  to each of
these atomic events.

In a realistic experiment, we might not observe the distinctions between all atomic
events. For example, above we might just observe the total number of heads instead of
the exact sequence of coin flips. We can describe what we observe using compound
events: in this case, , , and .

Samples

A typical experiment is repeatable: we can imagine doing the same experiment more
than once, with the distribution over outcomes  being the same each time. If we
repeat  times, we can collect the outcomes into a sample or data set .

By assumption, order doesn't matter: the sample is exchangeable. That is, we can
permute the indices 1:T without changing the information contained in the sample.

Despite the name, a data set is not a set: like a set, order is unimportant, but unlike a set, it
matters if we see the same outcome more than once.

For example, if we flip a single coin seven times, we might see the sample 
. (That is, , and so forth.) This outcome is

{HH, HT , T H, TT }
4
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equivalent to  or : all that matters is that we saw
three heads and four tails.

For another example, we might flip a pair of coins three times, recording the number of
heads each time. Then we might see the samples  or . What matters here is
the number of times we saw , the number of times we saw , and the number of times
we saw .

Working with probabilities

In small probability spaces we can just list out all the atomic events, and calculate
probabilities of compound events by the sum rule. But it's common to have so many
atomic events that we have no hope of listing them all: for example, there are more
possible shuffles of a 52-card deck than there are atoms in the Earth. So, we need tools
to help us do the calculations without explicitly enumerating everything. There are lots
of such tools; but in the rest of these notes we'll cover a few of the most useful.

Disjoint union

If  and  are disjoint events, meaning that , then

This follows directly from our definitions:

Disjoint events are also called mutually exclusive.

The disjoint union rule also works for multiple sets: if the sets  are mutually exclusive,
meaning that they are pairwise disjoint, then

A useful generalization of the disjoint union rule is the union bound: for any  and ,
disjoint or not, we have

We'll prove this in the next section.
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Non-disjoint union

We can use the tools above to figure out what happens when we take a union of sets
that overlap, like in our food example from before.

Let  be the event that we pick a vegetable, and  be the event that we pick a yummy
food. How can we calculate ?

We can split the set  into three disjoint parts: , , and . So,

We can also split  and  into two pieces each:

Adding these together,

Since , we see that ; this is the union bound we
described above. By subtracting the above expressions for  and 
we can figure out the exact difference:
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Exercise: Suppose we stand on a street corner in Pittsburgh and survey people. We
ask two questions: do you like computer science, and do you watch the Steelers. You
find that 67% of passers-by respond yes to the first question, and 90% respond yes
to the second. Furthermore, 65% respond yes to both questions. What is the
probability of finding a person who responds no to both questions?

Logical rules

We've already talked about the relationship between logical and set-based descriptions
of events. This relationship means that there is a probability inference rule for every
logical inference rule. For example, De Morgan's laws:

Perhaps more subtly, if one logical statement implies another, , then .
For example, if being human implies being mortal, then . This
follows since the event  (here, being human) has to be a subset of the event  (here,
being mortal).

Combinatorics

If we start from a uniform distribution over our entire probability space, then calculating
the probabilities of events boils down to counting: how many atomic events satisfy a
given property? For this purpose, combinatoric tools can be very useful. The general
strategy is to describe a compound event using a sequence of simpler choices, then
count the ways to make these choices, so that we can get an exhaustive description of
all the atomic events that make up a compound event. The key difficulty is to make sure
to count each atomic event exactly once.

For example, what is the probability of drawing three of a kind in a five-card hand? The
atomic events here are the possible unordered five-card hands:  of them. To get
three of a kind, we must pick what rank to have three of (  choices), which card of that
rank to exclude (  choices), and what two other cards to include in the hand (
choices). Every way of making these choices describes a different three-of-a-kind hand,
and all such hands can be constructed with some sequence of these choices. So the
total number of atomic events that correspond to three-of-a-kind hands is 

P (¬(A ∧ B)) = P (¬A ∨ ¬B)

P (¬(A ∨ B)) = P (¬A ∨ ¬B)
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, and the probability of getting one is

or about 2.26%.

The above calculation assumes that we care about getting exactly 3 of one rank, and that the
other two cards can be anything. We could include 4-of-a-kind hands (since they contain three
of a kind); or we could exclude hands with a full house (where the remaining two cards are a
pair). Either of these would change the result. For example, to exclude a full house, we replace 

 with : we choose the fourth card to have a different rank from the previous three,
then we choose the fifth card to have a different rank from the previous four. This changes the
probability to about 2.11%.

The basic building block in the above calculations is the number of ways to choose 
distinct things out of a menu of . This is written

and pronounced "  choose ". For example, choosing two distinct cards out of 48 yields

 options, and choosing 5 out of 52 yields  options; we used both of these

values above. See Wikipedia's article on poker hand probabilities for lots more
examples.

Extensions

Probability spaces are extremely expressive, but they don't cover every possible
situation. Here are a few examples of situations that might need additional tools.

First, what if I think that I'm not the only agent in the universe? That is, I believe there are
other intelligent beings who predict my actions and try to optimize their own actions in
response. It seems hard to assign probabilities to the actions of these agents.

For another example, suppose two people disagree on the probabilities of some
outcomes. They can each build a separate probability space; but how should they talk
with each other about the probabilities of events that they both can observe? How
should they interpret each other's behavior?

For a third example, exact probability calculations can be very expensive. What should I
do if I can't afford the necessary computation? How should I predict the behavior of a
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computationally limited agent?

For a final example, the conclusions I reach by probabilistic reasoning can be very
sensitive to my starting model. Can I recognize when one of my assumptions causes a
large change in my conclusions? Can I design a more stable reasoning process?


