
Mean

The mean of a random variable (also called its expected value or first moment) is
defined as

For example, if  is the number of spots that show up on the roll of a fair die, then

The mean tells us what the value of  will be on average: sometimes the value will be
larger, sometimes it will be smaller, but the total positive and negative fluctuations will
tend to cancel out over time.

An alternate notation for the mean is . (We've also used a bar to denote the
complement of a Boolean random variable, but the meaning will typically be clear from
context.)

The mean of  has the same units as  itself: e.g., if  is the height of a person in ,
then  is measured in  as well.

Scatter plot

In low dimensions we can visualize our data with a scatter plot: we take a sample from 
 and plot each of the samples  as a single point.

E(X) = x P (X =
x

∑ x)

X

E(X) = 1 +
6

1
2 +

6

1
3 +

6

1
4 +

6

1
5 +

6

1
6 =

6

1
3

2

1

X

E(X) = X̄

X X X cm

E(X) cm

P (X) X , X , …1 2



The mean is the center of mass of the scatter plot. While there might not be any
samples exactly on the mean, the displacements of the individual samples away from
the mean tend to add up to zero. (The average displacement would be exactly zero in an
infinitely large sample.)

Linearity of expectation

One of the most useful properties for working with means is linearity of expectation: for
a real-valued random variable  and constants ,

That is, expectation is a linear function from random variables to real numbers, so that we can
pass linear functions into or out of expectations.

For example, since the expected number of spots on a die roll is 3.5, the expected value
of three times the number of spots is 10.5.

We can do this with more complicated expressions too. For example, the solution to the
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normal equations  depends linearly on  when  is fixed. So if  is a
random variable, then the solution  is also a random variable, and we can write 

.

Variance

The mean tells us what value our random variable will take on average, but it ignores
how much the variable fluctuates around this average. There are a number of ways to
quantify this fluctuation — that is, to answer how far a random variable will typically be
from its mean. The most widely used ways are a pair of related measurements called the
variance and the standard deviation.

The variance is defined as

In words, the variance is the expected squared difference between a random variable
and its mean.

For example, suppose  is a fair coin flip: it takes values 0 and 1 with equal probability.
The mean is . The difference between  and  is either  or , with
equal probability; squaring and averaging tells us that .

The units of variance are the square of the units of the original random variable. For
example, the variance of a height might be measured in . This is not very intuitive.
So, it's common to report the standard deviation instead: this is the square root of the
variance, and it is often written . The standard deviation has the same units as 
and .

The standard deviation is a pretty good match for our intuitive idea of how far a random
variable tends to be from its mean. Its main flaw is that it is sensitive to outliers: that is, if
there is a small probability of encountering a measurement that is very far from the
mean, that will have an outsized effect on the standard deviation.

For example, let's make a low-probability change to our fair coin flip from above.
Suppose that  takes values  or  with probability 49.95% each; but with the remaining
probability of 0.1%, it takes value 100. The low-probability event causes the mean of 
to move somewhat away from 0.5, to around 0.6. But the variance is now around 10
instead of  — a much larger change than the mean.
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This sort of sensitivity means that it can be difficult to estimate the variance accurately.
In the example above, if we take fewer than 1000 samples of , we have a good chance
of not even seeing the large value, and thinking that  is an ordinary fair coin.

Exercise: if the variance of  is 1, what is the variance of ?

Exercise: if the standard deviation of  is 1, what is the standard deviation of ?

Normalizing a random variable

When working with a random variable, it's common to (approximately) subtract out its
mean, so that its mean is (approximately) zero. This is called centralizing the random
variable.

After centralizing, it's also common to (approximately) divide by the standard deviation,
so that the standard deviation is (approximately) 1. This is called standardizing or -
scoring the random variable.

Both of these transformations are sometimes called normalizing the random variable;
this is a less-specific name that encompasses any processing that's intended to remove
some kind of idiosyncracy in a random variable.

Normalizing affects different downstream machine learning procedures in different
ways. So, it is sometimes but not always a good idea to normalize; and different learning
procedures need different kinds of normalization.

Moments

We can measure lots of additional properties of a random variable by looking at 
for different functions . Such expectations are called moments of .

For example, if

then  is the probability that . Or, if
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for some value of , then  tells us whether  has a periodicity of length :
this moment will far from zero if there is some value  such that  tends to take values
close to , and close to zero if not (i.e., if  is approximately
aperiodic).

The polynomials are a common and useful source of functions to use in defining
moments. The expectations of the monomials , , , ... are common enough to
have special names: they are called the first, second, third, ... moments.

We can recognize from the definitions that the mean is the first moment. It's common to
remove the mean (centralize the random variable) before taking second, third, and
higher moments, so that we get , , and so forth. These
are called central moments, and we can recognize from the definitions that the variance
is the second central moment.

The third central moment is called skew, and it measures the symmetry of a distribution:
if  has positive skew it means that large positive values of  are more likely than large
negative ones, while negative skew means the reverse. The fourth central moment is
called kurtosis, and it measures the balance between small and large values of : if we
keep the variance fixed, a high kurtosis means that we put higher probability on very
large values of  while compensating by making small values smaller.

High order polynomial moments are even more sensitive to outliers than the variance is.
That makes it even harder to estimate them from data. But, if we know lots of moments,
that tells us a lot about a random variable.

Exercise: what is the variance of a biased coin flip, in terms of the probability  of
seeing 1? What about skew or kurtosis?

Covariance and correlation

Suppose that we have two random variables  and . The covariance between them is
defined as

If the covariance is positive, it means that positive values of  tend to co-occur with
positive values of , and negative values of  tend to co-occur with negative values of 

. If the covariance is negative, it means the reverse: positive values of  are seen with
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negative values of  on average, and vice versa.

If we standardize  and , then their covariance is also called the correlation of  and 
:

Correlation is always in the range : a correlation of  means that  is a linear
function of  with positive slope, while a correlation of  means that  is a linear
function of  with negative slope.

Correlation and covariance are not the same; for example, covariance can be bigger
than  or smaller than . We haven't defined independence yet, but we will see later
that it is separate from both covariance and correlation. If two variables are
independent, they will have zero covariance and zero correlation, but the reverse is not
true.

Exercise: given an example of two random variables that are perfectly dependent (i.e.,
one is a function of the other) but have zero correlation.

Conditional mean and variance

Suppose we have a random variable  with some mean  and variance . If we
condition on an event , the distribution of  can change; this new distribution will have
its own mean and variance, which we write  and . These are called the
conditional mean and variance of  given .

If we have a family of events , then  represents a table: it shows
 for all possible values of .

Vector-valued random variables

If  is a random variable that takes values in some vector space , then we define 
exactly as before:

If our vector space is , this is equivalent to taking the mean componentwise. (This

Y

X Y X

Y

Corr(X, Y ) = E (
σ(X)

X − E(X)

σ(Y )

Y − E(Y ))

[−1, 1] +1 Y

X −1 Y

X

+1 −1

X E(X) V (X)

A X

E(X ∣ A) V (X ∣ A)

X A

Y = 1, Y = 2, … E(X ∣ Y )

E(X ∣ Y = y) y

X V E(X)

E(X) = x P (X =
x

∑ x)

Rn



follows from linearity of expectation.)

For , we generalize the definition of the variance of : we define the covariance
matrix of  to be

or, expanding,

By comparing this formula to the scalar case, we can see that the diagonal elements of 
 are the variances of the individual components of , and the off-diagonal

elements are the covariances of pairs of components of . We'll also sometimes refer to
 as just the variance of , with the understanding that  is a scalar if  is a

scalar, and a matrix if  is a vector.

Note that the covariance matrix is always symmetric — we can see this from the above
expression, or by noting that the covariance of  and  doesn't depend on which way
we order them.

Also note that the covariance matrix is always positive semidefinite: from the definition
of variance and linearity of expectation, for any  we have

If  takes values in some inner product space  instead of , we define the variance to be a
linear operator on : let  and set  for each . This
reduces to the above definition if .

The simplest possible covariance matrix is the identity, . This means that each
individual coordinate has variance 1, and any two coordinates are uncorrelated. We can
make a sample with variance  by sampling each coordinate independently and
standardizing. NumPy provides a convenient method for doing so:
numpy.random.randn(m, n)  makes an  matrix of independent random variables

with mean zero and variance 1. If we take each column of this matrix as one of our
samples, we will have the variance matrix equal to  as desired.

Interpreting covariance matrices

The covariance matrix  tells us something about the shape of the distribution
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of . In  or  we can visualize this shape with a scatter plot.

By looking at the plot, we can see some information about how the samples tend to vary.
This information shows up as well in the covariance matrix. In the sample shown above,
the covariance matrix is the identity, which results in a perfectly symmetric blob of
points around the origin.

In this section we're showing scatter plots for samples that have zero mean. If the mean were
nonzero they would look the same except for being shifted.

The diagonal entries of  are the variances of individual coordinates of . A large
variance  means that the distribution of  is spread out: the scatter plot will stretch
out along dimension . The spread is proportional to the standard deviation, the square
root of . A small variance means that the corresponding coordinate is tightly packed
together. In the limit, a variance of  means that the value is always the same, making
the scatter plot into a line in 2D or a pancake in 3D.

If  is a diagonal matrix, then this sort of stretching or squashing of the individual
axes means that our data distribution will look basically like an ellipsoid, with the axes of
the ellipsoid pointing along the coordinate axes. The diameter of the ellipsoid in each
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direction will be proportional to the standard deviation in that direction (the square root
of the variance). Here is a plot where the horizontal axis has variance 5 and the vertical
axis has variance 1.

The off-diagonal entries of  are the covariances of pairs of coordinates of . A positive
covariance means that the two coordinates tend to have the same sign; so, the scatter
plot stretches out to the top right and bottom left. The larger the covariance, the more
the scatter plot stretches. A negative covariance, on the other hand, means that the two
coordinates tend to have opposite signs. In the following plot, each coordinate of  has
variance , and the covariance is :
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If we fix the variances of two coordinates while increasing their covariance, their
relationship will become closer and closer to deterministic. In 2D, the scatter plot will
approach a diagonal line, so that we can perfectly predict one coordinate from the other.
The slope of the line will depend on the standard deviations of the individual
coordinates. The largest possible covariance will be the geometric mean of the
individual variances, . At this value, the scatter plot will be a perfect line,
and the correlation between the two coordinates will be . (The sign depends on
whether the slope of the line is positive or negative.) In the following plot, the covariance

is ; note that  is just slightly smaller than , the geometric mean of 
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Variance of a linear transform

If we apply a linear transform  to a random variable , we have

We can prove this fact using linearity of expectation.

Exercise: do so. (Hint: assume without loss of generality that ; then use the
definition of variance .)

There are a lot of uses for this identity. For example, we can use it to generate samples
with any desired covariance matrix , given a factorization of . Say we have the
Cholesky factorization : we start by generating samples  with covariance . If
we then transform them to , we have
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Putting all of the above together, we can now describe what a scatter plot looks like for a
general covariance matrix. To do so, we'll use the singular value decomposition of :

Here  is square and orthonormal, and  is diagonal and nonnegative. Note that we've
used the form of the SVD for symmetric positive semidefinite matrices, where we have
the same orthonormal matrix on both the left and the right.

Using the identity for covariance of a linear transform, we know that

That is, the covariance of  is diagonal. That means we understand the shape of
the distribution of : its scatter plot will look like an axis-parallel ellipsoid, with the
diameter along axis  proportional to .

But now we can go back to . We can think of the columns of  as an
orthonormal basis. Multiplying  by  means transforming each coordinate axis of 
into one of the basis vectors. Since the basis vectors are orthonormal, the overall effect
will be a combination of rigid rotations and reflections.

So, the scatter plot of  will look like a rotated (and maybe reflected) version of the
scatter plot of : that is, it will be an ellipsoid, but not necessarily axis-parallel any more.
Each column  will point along one axis of the ellipsoid, and the spread of the ellipsoid
along the direction  will be proportional to .
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The vectors  are called the singular vectors of the covariance matrix. The variances  are
called the singular values. For a symmetric PSD matrix, the singular values and singular vectors
are also called the eigenvalues and eigenvectors — though eigenvectors and singular vectors are
different for general matrices. So you will often see a distribution described in terms of the
eigenvectors of its covariance matrix.
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