
Matrix differentials

So far we've learned a lot of tools for working with linear functions and linear equations.
Of course, in reality, we need to deal with nonlinear functions. One good way to do this
is to use linear approximations: work with a linear function that is close to our true
nonlinear function in a local region. We can get these linear approximations by
differentiating to form a Taylor series; that's the main subject of this set of lecture notes.

A common complication in machine learning is that our nonlinear functions have high-
dimensional arguments: multiple vectors, matrices, or even tensors. It's possible but
unwieldy to differentiate such functions component by component; instead it's often
better and faster to work directly in matrix notation. Tools for the latter are called matrix
differential calculus.

In these notes we'll use concrete coordinates for all of the vectors and matrices. Many
of the same techniques work for abstract vector spaces, but with concrete
representations, we get to see how the overall derivatives depend on the derivatives for
individual coordinates.

First-order Taylor approximation

We can approximate any nonlinear function around a point with a
linear function called the first-order Taylor approximation or Taylor series for at :

Here and . And, the matrix is the Jacobian of at ; that is, it is the
first derivative of with respect to , evaluated at :

The Jacobian implicitly depends on the point where we evaluate the derivative. We
can be more precise by writing the Taylor approximation as

Note that there are competing conventions for how to represent the Jacobian: some books
define it to be the transpose of what we've written here. Our convention is called the numerator
layout, since the numerator () corresponds to the first dimension of (the row index).

f ∈ R →n Rm (, f())x̂ x̂

f x̂

y − ≈ŷ A(x −) y, ∈x̂ ŷ R , x, ∈m x̂ R , A ∈n Rm×n

y = f(x) =ŷ f()x̂ A f x̂

y x x̂

A =ij ∂xj

∂yi

∣

∣

x̂

A x̂

(y −) ≈ŷ A() (x −x̂)x̂

∂yi A

Taylor series examples

If we pick so that represents a curve, then the Taylor approximation is a line that
is tangent to the curve:

The matrix will be a column vector, and represents the instantaneous velocity of a
point moving along the curve.

If instead we pick , so that represents a curved surface in , then the Taylor
approximation is a hyperplane (an -dimensional subspace of) that is tangent to
the surface:

n = 1 f

A

m = 1 f Rn+1

n Rn+1

The Jacobian matrix will be a row vector, equal to the gradient of . So, the
components of will be the slopes of the hyperplane in each direction.

Differentials

We can also write the first-order Taylor approximation using a somewhat different but
equivalent notation:

Informally, we can think of as being short for , and as being short for .
More formally, is a vector in the tangent space to at , as in the plots in the previous
section. (That's why we can write instead of above: the tangent space is linear even
if is not.)

The vectors and are called differentials. We often think of them as small changes
in and , and that's a reasonable intuition since the Taylor approximation is typically
best in a small region about . But in fact it's perfectly valid to consider large values of

; it's just that the tangent space may no longer be close to in this case.

A f

A

dy = A dx

dy y − ŷ dx x − x̂

dy f x̂

= ≈

f

dx dy

x y

,x̂ ŷ

dx, dy f

No matter what inner product space we're working in, a differential always has the same
type as its original variable. For example, we could have a matrix that depends
on a scalar . In this case would be a scalar, and would be a
matrix.

A good mnemonic for the new notation is that if we "divide through by ", we get
, which states that is the first derivative of with respect to . Just like the

menmonic for the chain rule, the notation is only suggestive, since we can't actually
divide by a vector like .

Just as before, we can make it explicit that depends on :

Unlike the notation for the Taylor approximation, note that we've written instead of .
This convention is traditional, and saves a bit of ink, but it can be confusing: in , the in

 means the place where we evaluate the derivative, while the in means the variable we
are taking the derivative of. There's no ambiguity since one is inside a differential and one is not.

We can use the same sort of notation to work with more-complicated expressions as
well. In general, means the linear part of a change in the value of
. So, if we work out a formula for , it lets us directly read off a first-order
Taylor series. For example, the equation

says that, if we make a change to the value of , the value of changes
by to first order. (We haven't yet shown how to derive this equation using
differential notation, but we can check it using our knowledge of scalar derivatives.)

So why did we bother? The old notation was fine for many purposes, but it turns out that
the new notation will be a lot more convenient when we have to manipulate complex
expressions. In fact, we will see cases later where it's easy to use the new notation to
take derivatives, but it's not even possible to write the answer compactly in the old
notation. One reason for the extra flexibility is that we have separated individual
differentials like and , giving each one its own meaning, instead of giving a meaning
only to a combined notation like .

Working with differentials

One of the advantages of differential notation is that it lets us write derivatives of

A ∈ R3×2

x ∈ R dx ∈ R dA ∈ R3×2

dx

=
dx
dy A A y x

dx

A x

dy = A(x) dx

A(x) A()x̂

A(x) dx x

A(x) x dx

d(expression) expression

d(expression)

d(x +2 2x + 3) = 2x dx + 2dx

dx x (x +2 2x + 3)

(2x + 2)dx

dx dy

dx
dy

complicated expressions cleanly and compactly. For example, we can mix scalar, vector,
and matrix variables; we can avoid explicit manipulation of indices for vectors, matrices,
and tensors; and we can work with high-dimensional derivatives without having to
reshape them into standard shapes.

Just as with scalar derivatives, some of the most useful tools for working with
differentials are linearity, the product rule, and the chain rule. Using these tools, we can
often reduce a complex differential to a bunch of lookups of derivatives of standard
functions. We'll look at each of these techniques in turn.

Standard functions

For scalar functions like and , the differential is equivalent to the scalar derivative:

So for example, , , and .

In addition, there are identities for standard matrix and vector functions. For example, if
 is a symmetric positive definite matrix, the differential of the log-determinant is

where is the standard matrix inner product . Note the similarity to the
scalar logarithm: for scalar , .

For another example, if is a vector, the differential of the vector norm is

A final example is that the differential of a constant is zero. More specifically, it is the
zero vector of matching type: if is constant then .

There are too many identities for standard functions to list here; a good reference is the
Matrix Cookbook.

Linearity

The differential symbol acts like a linear operator. So for example we can rewrite

cos exp

df(x) = f (x) dx′

d cos x = sin x dx d exp x = exp x dx dx =k kx dxk−1

A

d ln det A = ⟨A , dA⟩−1

⟨X, Y ⟩ tr(X Y)T

x > 0 d ln det x = d ln x = x dx−1

x

d∥x∥ = dx x =
∥x∥
x

 0

x ∈ V dx = 0 ∈ V

d

d(af + bg) = a df + b dg

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

and we can rewrite

Combining linearity with identities for standard functions lets us go a long way: e.g.,

The product rule

The differential of a product is

This is true for any product-like operation: e.g., scalar multiplication, matrix
multiplication, Kronecker product, composition of linear functions, vector convolution,
dot product, or componentwise multiplication of vectors. It's true even when the
product is non-commutative, as for example with matrix multiplication. (In this case the
order of the terms above matters.) And it extends to more than two terms: e.g.,

In the scalar case the product rule only applies to ordinary multiplication; but for vector
spaces there's a nearly infinite variety of product-like operations. For this reason, the
generalized version of the product rule can be highly expressive and useful.

Prime notation

The scalar equality is so useful that it's worth upgrading it to work more
generally. It turns out that, whenever we have an equation like

we can always factor out so that the equation takes the form

The overall expression can be nonlinear, since it can have a nonlinear dependence on .
But the differential always appears linearly.

For example, if , and if , then we can use the rules above
(namely linearity of and the identity for monomials) to show that

d(A X +T 3Y) = A dX +T 3 dY

d(3x +7 5 sin x + ln x) = 21x dx +6 5 cos x dx + x dx x >−1 0

d(fg) = df g + f dg

d(fgh) = df gh + f dg h + fg dh

df(x) = f (x)dx′

df(x) = expression involving x and dx

dx

df(x) = [linear operator that depends on x] dx

x

dx

x = (u, v) ∈T R2 f(x) = u +3 v3

d

2 2 2 2

As claimed, we have a linear operator (multiplication by the vector) applied to
. But the dependence on is nonlinear.

This factorization holds no matter how complicated the type of is: could take a tuple
of three matrices and a vector as input, and produce a tensor as output, and we would
still be able to define a linear function that relates to . But depending on the types
involved, the linear function could take different forms: a dot product, a matrix
multiplication, or something else. We'll say more about the "something else" case below.

Given the above factorization, it makes sense to give a name to the linear function: we
will call it , so that the equation becomes

just as for the scalar case. So for example, if as above, then
.

You will sometimes find different conventions for , such as transposing it or using special
notation in some cases for specific kinds of linear operators. The convention we define here has
the advantage of uniformity: the equation always holds, and is always interpreted
as application of a linear operator to .

The chain rule

Now that we've defined prime notation, the chain rule for differentials looks a lot like the
chain rule we're used to for scalars:

The easiest way to apply the chain rule is often to write out separate equations for in
terms of and for in terms of . Then we can substitute to get an equation for in
terms of .

For example, define a nonlinear function with a matrix argument like

where and are symmetric positive definite matrices.

We can use the chain rule to get an expression for . The first step is to
separately differentiate and . For , the identity for tells us that

df(x) = 3u du +2 3v dv =2 (3u 3v) dx2 2

(3u , 3v)2 2

dx = (du, dv)T x = (u, v)T

f f

dx df

f (x)′

df(x) = f (x) dx′

f(u, v) = u +3 v3

f (u, v) =′ (3u , 3v)2 2

f ′

df(x) = f (x)dx′

dx

d(f(g(x))) = f (g(x)) d(g(x))′

df

dg dg dx df

dx

f(U) = ln det U g(X) = A XAT

X U

d(f(g(X))

f g f ln det
−1

making the linear operator that maps to .

For , we can use the linearity of (or the product rule) to show

Putting these together, we can substitute and apply the linear operator
to to get

Example: linear regression

Linear regression is a good example of how to use the tools we've defined above. Recall
that, in linear regression, we are given a bunch of data points for . Here
is in a vector space like , and is a scalar target value. We can collect all of these
data points into a single big matrix and vector:

The dimensions are and . We'll assume that the inputs already
include the effect of any desired feature transform, including adding a constant
coordinate if we want one. So, our prediction on the th data point is , where

 is our parameter vector.

We can collect our predictions for all data points into a vector whose
coordinates are :

Our prediction errors are then , and our sum of squared errors is . Our goal
is to learn a parameter vector that minimizes the sum of squared errors:

We can minimize by differentiating and setting to zero:

df(U) = ⟨U , dU⟩−1

f (U)′ dU ⟨U , dU⟩−1

g d

dg(X) = A dX AT

U = g(X) f (U)′

dg(X)

df(g(X)) = ⟨(A XA) , A dX A⟩T −1 T

(x , y)t t t ∈ 1 : T xt

Rd y ∈t R

X = ⎝
⎛ ∣

x1

∣

∣
x2

∣
…

∣
xT

∣ ⎠
⎞

y = (y1 y2 … yT)

X ∈ Rd×T y ∈ R1×T xt

t =ŷt w ⋅ xt

w ∈ Rd

∈ŷ R1×T

ŷt

=ŷ w XT

ε = y − ŷ ∥ε∥2

w

arg ε ⋅
w

min ε = arg (y −
w

min)(y −ŷ)ŷ T

0 = d(y −)(y −ŷ) =ŷ T d(yy −T 2 y +ŷ T)ŷŷT

Since is a constant, . By linearity and the product rule, and the fact that a
scalar is its own transpose,

Substituting in and dividing by 2, we now want to solve

By linearity, , so

Since can be arbitrary, this implies

which are the normal equations that we introduced earlier.

Exercise: for ridge regression we would add a multiple of the squared norm of , and
solve instead. Differentiate the new objective including the
squared-norm term, and find the modified normal equations for ridge regression.

With two or more variables

If we have multiple variables then we can collect them together into a tuple , so
that an expression like becomes . Taking the differential, we
have

We can then expand back to use the original variables . Focusing on the two-
variable case for simplicity, we get

That is, we can split the linear operator into two separate linear operators and
, one acting on only and one on only. Each of these functions represents the

partial derivative of with respect to one of its arguments. Just as in the single-
variable case, we can define the functions and by the above equation.

y d(yy) =T 0

d(−2 y) =ŷ T −2d yŷ T

d() =ŷŷT d +ŷ ŷT d =ŷ ŷT 2dŷ ŷT

0 = −d y +ŷ T d =ŷ ŷT d (−ŷ ŷT y)T

d =ŷ dw XT

0 = dw X(−T ŷT y) =T dw X(X w −T T y)T

dw

XX w =T XyT

w

arg min [ε ⋅w ε + λw ⋅ w]

x, y, … u

f(x, y, …) = … f(u) = …

df(u) = f (u) du′

x, y, …

df(x, y) = f (x, y) dx +x f (x, y) dyy

f (u)′ f (u)x

f (u)y dx dy

f(x, y)

fx fy

There are two sets of variables here: the first set is the place where we are
evaluating the derivative, and the second set is the change we're making in
the first set. The overall expression can be nonlinear in the first set of arguments, but is
always linear in the second set.

For example, if then

by the chain rule. This expression represents the Taylor approximation

Example: two-layer network

Neural networks provide a great example of the chain rule. We can write a two-layer
network as

Here is the input to the neural network, is the output, are weight matrices,
and are weight vectors. The functions and are transfer functions; often they are
componentwise nonlinearities like

This particular example is a smooth version of a ReLU; its differential is

In general, whenver we differentiate a componentwise function like this, , we can
write a couple of ways. One is to make a diagonal matrix whose entries are the
componentwise derivatives: . Another is to make a vector of componentwise
derivatives and use the multiplication-like operator we defined above:

.

For brevity, write for the inputs to the first and second layers of the network:

We can now differentiate using the chain rule and linearity, to find how the output of
the network varies as we change the input :

x, y, …

dx, dy, …

f = sin(x + y)

df(x, y) = cos(x + y)(dx + dy)

f(x, y) − f(,) ≈x̂ ŷ cos(x + y)((x −) +x̂ (y −))ŷ

y = f(W g(W x +2 1 b) +1 b)2

x y W , W1 2

b , b1 2 f g

f (z) =i i ln(1 + exp(z))i

[df(z)] =i dz
1 + exp(z)i

exp(z)i
i

df = f (z)dz′

f (z)′

[f (z)] =′
ii f (z)

dzi

d
i

∘

s =i f (z), df(z) =
dzi

d
i s ∘ dz

u , u1 2

u =1 W x +1 b u =1 2 W g(u) +2 1 b2

y

x

The backpropagation algorithm for computing gradients is effectively an application of the chain
rule, very similar to the above: in backpropagation we want as a function of ,
considering as constant.

A note on notation

When we have multiple variables of different types, expressions for differentials can get
complicated, and it may not be straightforward to define a clear notation. One place
where notation sometimes fails us is in representing an equation of the form

. The value of is a linear function, so we have to have notation that lets
us apply a linear function of the correct type.

If and have simple types, there is often a standard notation for linear function
application. E.g., if and are real vectors, then returns a matrix, and we write
linear function application as matrix multiplication.

On the other hand, suppose that our variables are matrices. In this case the output of
is a linear function between matrices — often represented as a fourth-order tensor.
There may be no simple expression for this tensor, even if the calculations involving
differentials are not too bad. We'll give an example of this situation shortly.

In the worst case, we can always re-introduce explicit indices and work component by
component. To ease index manipulation, we can sometimes use the Einstein summation
convention; see torch.einsum for more details.

Example: batch norm

For example, consider the batch normalization operation that is often used in deep
networks. There are two steps in batch normalization: first subtract the batch mean from
every example in the batch, and second divide each example in the batch by the batch
standard deviation. If we let the matrix represent our batch, with one column per
example in the batch, then we can write these steps as

y

dy

=

=

=

=

=

f(u)2

f (u) du′
2 2

f (u)[W dg(u)]′
2 2 1

f (u)[W g (u)du]′
2 2

′
1 1

f (u)[W g (u)(W dx)]′
2 2

′
1 1

dy dW , db , dW , db1 1 2 2

x

dy = f (x)dx′ f (x)′

x y

x y f (x)′

f ′

X

T

https://pytorch.org/docs/stable/generated/torch.einsum.html

where is a vector with all elements equal to 1, the functions and compute row-wise
mean and variance, and denotes the broadcasting product. The inverse square root of

 is taken coordinatewise. If there are vectors in our batch, then will have
columns, and will be in . We can expand the mean and variance as

where extracts the diagonal of a matrix as a vector. (In the definition of above,
we've simplified the expression by using the fact that the rows of are guaranteed
to have zero mean.)

If we want to find in terms of , we can first separately differentiate the individual
steps in computing :

The first equation above uses linearity and the product rule. The second equation
handles each coordinate separately with the identity for monomials, and puts the results
together coordinatewise using . The third uses the chain rule (with and the
product rule.

Finally we can combine and with the chain rule to get the final answer:

This does in fact represent a linear function of for each value of ; but there's not an
easy way to write this linear function without an explicit representation of its argument

. We'd have to construct a fourth-order tensor such that an appropriate tensor
contraction accomplishes the same thing as the above equation, which is somewhat
tricky and error-prone.

Y = X − μ(X)eT

Z = (V (Y)) ∘− 2
1

Y

e μ V

∘

V n X n

e Rn

μ(X) = Xe
n

1

V (Y) = diag(Y Y)
n

1 T

diag V (Y)

μ(X)

dZ dY

Z

dV (Y) = diag(Y dY +
n

1 T dY Y)T

d(v) =− 2
1

− v ∘
2

1 − 2
3

dv

dZ = − V (Y) ∘ dV (Y) ∘(
2

1 − 2
3) Y + V (Y) ∘− 2

1
dY

∘ dv)− 2
1

dZ dV

dZ = − V (Y) ∘
2n

1 − 2
3

diag(Y dY +T dY Y) ∘T Y + V (Y) ∘− 2
1

dY

dY Y

dY

On the other hand it's easy to continue working with the above equation. For example,
we can calculate

and substitute in to get in terms of .

Type checking

We advised earlier that it's generally a good idea to type-check your expressions to help
catch bugs: that is, make sure you know the type of each sub-expression, and that
every operation makes sense given the types of its arguments. Type-checking is
particularly important with differentials, since there can be a lot of different vector
spaces floating around.

For this purpose, it helps to be clear about the exact types of expressions involving
differentials. Suppose we start from an expression that looks like

This equation describes how a variable depends on another variable ; in
other words it defines a function in . We often call this function or .

A source of confusion here is the distinction between the function itself (an element of)
and its value (an element of). You will unfortunately see both and used to refer to both
of these quantities. When working with differential notation, it's probably easiest to use the
convention that we omit all placeholder arguments in equations, and assume that all symbols
refer to values: e.g., and not . But we'll write if we want to
make the arguments of clear.

The differential will then look like

where , , and . Here, typically won't appear verbatim; instead
we'll get an expression that shows how to apply the linear function to , like

 in the example above.

The type of is : given it produces a function that maps to
. The function can be (and often is) nonlinear in its argument . But the output

of has to be a linear function that acts on ; for example, if and , then

dY = dX − dμ(X)e =T dX − dX ee
n

1 T

dZ dX

f = … x …

f ∈ V x ∈ U

U → V f f(x)

U → V

V f f(x)

f = x +2 3y f(x, y) = x +2 3y f(x, y)

f

df = f (x) dx′

x ∈ U dx ∈ U df ∈ V f (x)′

f (x)′ dx

⟨(A XA) , A dX A⟩T −1 T

f ′ U → (U → V) x dx ∈ U

df ∈ V f ′ x

f ′ dx U = Rn V = Rm

 returns a matrix .

Total vs. partial derivatives

One advantage of our new notation is that there's no need for separate treatment of
total and partial derivatives (vs.). Instead we can use a more flexible and
expressive convention: all variables that appear inside a differential can change
simultaneously and independently, and any other variables are held constant. (With the

 vs. convention, it's hard to keep track of mixtures of variables that are either
changing together or held constant.) So for example in the expression

we are relating changes in to changes in and while holding fixed.

If and can't change independently, but instead depend on another variable , we can
include more equations:

We can separately calculate differentials for each of these new equations:

and substitute them in if desired:

This substitution is essentially the chain rule. By adding constraints like this, we can
implement any combination of variables that change independently or together, or are
held constant.

If we want to go back to the old notation, we can manipulate to get an equation that only
contains one differential on each side, and then "divide through" by one of them. E.g., if
we do this with in the equation above, we get the total derivative

As always, we aren't really dividing here, so the heuristic doesn't always work; but it's a
good mnemonic.

What we're really doing is pulling out an expression for , the linear function that acts on . The

f ′ f (x) ∈′ Rm×n

dx
d

∂x
∂

dx
d

∂x
∂

dL = f(x, y, z) dx + g(x, y, z) dy

L x y z

x y t

x = ℓ(t) y = m(t)

dx = ℓ (t)dt dy =′ m (t)dt′

dL = f(ℓ(t), m(t), z) ℓ (t)dt +′ g(ℓ(t), m(t), z) m (t)dt′

dt

=
dt

dL
f(ℓ(t), m(t), z) ℓ (t) +′ g(ℓ(t), m(t), z) m (t)′

f ′ dt

heuristic takes advantage of the fact that we often write application of a linear function like
multiplication, but it fails when we can't do this.

Useful identities

Linear operations

We already know that the differential passes straight through linear operations. Here
are a few useful examples:

Matrix transpose is linear, as is its cousin the adjoint of a linear operator. So,
.

Matrix trace is linear, so . The trace shows up in a lot of places; see
below.

Reshaping a vector, matrix, or tensor is linear. So is concatenating or splitting
matrices, vectors, or tensors. Common examples include

The numpy.reshape function.

The function that pulls out the main diagonal of a matrix as a vector, ,
as well as its inverse that turns a vector into a diagonal matrix. Both of these
are often written as , with the type of the argument determining which one
we mean. (So, returns a matrix that is the same as on the
diagonal, and zero elsewhere.)

The function that turns a matrix into a vector by stacking its columns (M(:) in
Matlab, or numpy.ravel in Python)

The inverse of the previous example, the function that turns a vector back into
a matrix by splitting it into columns and stacking them horizontally.

Trace

The trace of a square matrix is defined as the sum of its diagonal entries,

As mentioned above (and as can be seen from the definition), is a linear function. The
trace often finds its way into matrix algebra for a number of reasons. Perhaps the most
common one is that the matrix inner product can be expressed using trace:

d

d(A) =T dAT

d tr(A) = tr(dA)

d =i Mii

diag

diag(diag(M))) M

M ∈ Rn×n

tr(M) = M

i=1

∑
n

ii

tr

∑

Some useful identities involving trace:

If is a scalar, we can treat it as a matrix, so that .

The trace of a matrix is the same as the trace of its transpose, .

We can do trace rotation: . Trace rotation works as long as the
product is square, even if and are not. In this case, is also square, but
will be a different size than .

Componentwise multiplication can re-associate: . It
works with broadcasting too, though we have to be careful about keeping the order
the same. (This identity works because a diagonal operator is self-adjoint.)

Exercise: prove that trace rotation works by expanding the matrix products and
 as summations. Prove the identity about componentwise multiplication the same

way.

Inverses and determinants

We can get a lot of power from formulas for the differentials of common matrix
operations such as inverse and determinant. Let be an matrix. If is invertible,
then

When is not invertible, the above identity fails: doesn't exist, similar to what
happens if we try to differentiate at .

Similarly, if is invertible,

When is not invertible, the above identity fails: while the differential still exists, the
formula for it is more complex, and is beyond the scope of these notes.

If is positive definite, then

When is not positive definite, the above identity fails: the slope approaches infinity as

⟨A, B⟩ = tr(A B) =T A B

ij

∑ ij ij

a 1 × 1 tr(a) = a

tr(A) = tr(A)T

tr(AB) = tr(BA)

AB A B BA

AB

tr((A ∘ C) B) =T tr(A (B ∘T C))

AB

BA

F n × n F

d(F) =−1 −F dF F−1 −1

F dF

1/x 0

F

d det F = (det F) tr(F dF)−1

F

F

d ln det F = tr(F dF)−1

F

we approach the boundary of the set of PSD matrices.

For completeness, here's a quick definition of the matrix determinant. For a lower or upper
triangular matrix , is the product of its diagonal elements, . For a general matrix

, the determinant is the product of the determinants of its factors, .
While it's not obvious, the determinant turns out to encode a lot of useful information about a
matrix, so it shows up regularly in formulas that we need to differentiate.

Shapes of derivatives

In the equation , the shape of depends on the shapes of and . Here's a
table of common shapes: write for scalars, for column vectors, and for
matrices. Then

Scalar Vector Matrix

Scalar

Vector

Matrix

For example, the middle entry in the top row tells us that, if we have a scalar that
depends on a vector , then will be a row vector, written here as . In general, the
row label tells us the shape of the output, the column label tells us the shape of the
input, and the entry at that row and column tells us the shape of .

This table lets us map differentials to more traditional names:

In the table entry , the scalar is the ordinary derivative.

In the table entry , the vector is the gradient of a real-valued function.

In the table entry , the vector is the tangent to a curve in .

In the table entry , the matrix is the Jacobian of a function from one
vector space to another.

In the remaining entries, there's no traditional name other than "derivative."

Each of the entries of the table is called an identification theorem: it lets us identify an
expression involving differentials with an expression about ordinary derivatives. For
example, in a previous section we showed how to differentiate the log-determinant
function:

T det T T∏i ii

A = LU det A = (det L)(det U)

dy = f (x)dx′ f ′ x y

a, s, t u, v M , N

ds = a dt ds = u dvT ds = tr(M dN)T

du = v ds du = M dv ×

dM = N ds × ×

s

v f (v)′ uT

f ′

ds = a dt a

ds = u dvT v

du = v ds v Rd

du = M dv M

−1

Given this equation, the top-right entry of the table lets us identify the derivative as

We can summarize all of the identification theorems into the single identity ,
where we identify as the derivative.

This table also shows us something else interesting: in the entries marked , traditional
derivative notation becomes more difficult. While we could write the derivative as a third
or higher order tensor, often it's simpler to avoid doing so. An example of this is in the
section above on batch norm: while we could have forced our equations into the form

 so that we could pull out an expression for the tensor , it's easier if we
don't.

Second and higher differentials

Suppose we've followed the above rules to calculate a differential . This
equation represents a first-order Taylor expansion, showing how the change depends
on the change . This expansion is accurate in some neighborhood of the point .

We could ask instead for a second-order Taylor approximation — this will typically be
accurate in a larger neighborhood of . We can write the second order Taylor expansion
as

where and are the first and second order differentials. (We'll show how to find
below.) Just as the first differential represents the linear part of the change in as
a function of the change in , the second differential represents the quadratic
part.

Here's an example of a second-order Taylor approximation (in purple) along with the
first-order approximation (in red):

d ln det F = tr(F dF)−1

ln det F =
dF

d
F −T

dy = f (x)dx′

f (x) =′
dx
dy

×

dx = f (y)dy′ f (y)′

df = f (x)dx′

df

dx x

x

y ≈ f(x) + df(x) + d f(x)2

df d f2 d f2

df(x) f

x d f(x)2

The first-order expansion is a linear function of ; the second-order expansion will be a
quadratic function of .

In this figure,

and the differentials are

dx

dx

f(t) = ⎝
⎛ 2 cos t

4 sin t

t ⎠
⎞

df(t) = f (t) dt =′ dt⎝
⎛ −2 sin t

4 cos t

1 ⎠
⎞

⎛ ⎞

Notation for higher differentials

There are only two shapes where standard notation makes it easy to write the quadratic
part of a second order Taylor expansion:

If is a scalar with , then is the same shape as , and .

And if is a scalar and is a vector with , then we can write as a
matrix, and .

More generally, for arbitrary shapes and , we can write . (In fact,
we can consider this as a definition of .) This formula states that the second
differential is a linear function (represented by) applied to the square of . The
symbol represents the outer product: the vector that contains all possible pairwise
products of components of . However, this formula isn't that useful in practice: it's
often better not to try to pull out an explicit expression for .

We can go even higher, to third differentials, fourth differentials, and so on. For the third
differential we get a cubic equation that we can write (a linear
function applied to the third power of). The fourth differential yields a quartic
equation, and so on. But most of the time, it's enough to work with first and maybe
second order differentials; and as before, even if we do work with a third order
differential, we often don't want to pull out an explicit expression for .

Computing the second differential

Computing the second differential works exactly like computing the first differential. We
need just one extra rule: pre-existing copies of behave like constants.

For example, start by finding the first differential of :

d f(t) =2 f (t) dt =′′ 2 dt⎝
⎛ −2 cos t

−4 sin t

0 ⎠
⎞

2

t s = f(t) f (t)′′ s d s =2 f (t) dt′′ 2

s u s = f(u) f (u)′′

d s =2 du f (u) duT ′′

x y d y =2 f (x) dx ⊗′′ dx

f (x)′′

f (x)′′ dx

⊗

dx

f (x)′′

d y =3 f (x) dx ⊗′′′ dx ⊗ dx

dx

f (x)′′′

dx

∥Ax −2
1 b∥2

∥Ax − b∥2

d ∥Ax − b∥2
1 2

=

=

=

=

(Ax − b) (Ax − b)T

d(x A Ax − 2b Ax + b b)2
1 T T T T

(dx A Ax + x A A dx − 2b A dx)2
1 T T T T T

x A A dx − 2b A dxT T T

From the above, we can find the second differential:

The entire second term vanishes because it is constant; in the first term we use linearity
to pull out the constant .

Multiple variables

The same rule applies when we have multiple variables: we consider all previous
instances of differentials to be constant. For example, if

then

by the product rule; so

The first two terms in come from the first term of by the product rule; the last two
terms of come from the last term of by the product rule.

d ∥Ax − b∥2
2
1 2 =

=

d(x A Adx − 2b Adx)T T T

dx A A dxT T

A A dxT

dx, dy, …

f(x, y) = (cos x)(sin y)

df = (− sin x dx) sin y + (cos x)(cos y dy)

d f =2 (− cos x dx) sin y +2 (− sin x dx)(cos y dy)

+ (− sin x dx)(cos y dy) + (cos x)(− sin y dy)2

d f2 df

d f2 df

