
The vector space 

The best-known example of a vector space is : the space of -element vectors of real
numbers. The first important properties of  — the ones that make it a vector space —
are:

It supports addition and scalar multiplication of vectors:  for , 
.

Addition and scalar multiplication satisfy the usual properties: e.g., associativity and
commutativity; distributivity of scalar multiplication over addition; the existence of
an additive identity (the zero vector).

In addition,  has some more nice properties, beyond just being a vector space:

It has an inner product, written  or , with  for any .

The inner product satisfies all of the usual properties: e.g., it is bilinear (linear in
each argument with the other fixed) and symmetric, and .

We can use the inner product to define a norm . This norm lets us
define other useful concepts like the convergence of a sequence of vectors to a
limit point.

Under the above norm, every Cauchy sequence converges. That is, for a sequence 
 with , if  as , then  exists and .

The first two of these properties make  an inner product space. The last two make it a
complete inner product space. Both of these are stronger than just being a vector
space: they are extensions of the vector space data type.

Other vector spaces

All of these properties make  a nice formal system to work with. But sometimes we
need to work with objects that are not in : e.g., matrices or functions. We can still use
some of the same tricks when working with these objects, by abstracting out the
important properties that we like from .

This sort of abstraction is very important in ML: it lets us take algorithms that are
designed to learn an element of  (often called a parameter vector) and generalize
them to work on other classes of objects such as matrices or functions. For some
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classes of objects, this is the main way that we know how to design effective learning
algorithms.

We define a vector space to be a set  (whose elements are called vectors) together
with operations of addition and scalar multiplication that behave in the usual way (i.e.,
copying the important properties from ): e.g.,  for  and .

Note that the scalar  is still a real number, even though we've changed the vectors that
it is multiplying; the set of scalars doesn't change when we go from  to a general
vector space . More precisely, we're going to be talking about a vector space over the
reals, which means that our scalars are elements of .

One can also define vector spaces that use different kinds of scalars: e.g., complex numbers  or
even other fields such as quaternions or integers modulo a prime.

Some examples:

The set of matrices  is a vector space, if we interpret addition and scalar
multiplication elementwise.

We can make the set of real functions of one argument  into a vector space, if
we define addition and scalar multiplication to operate separately on each possible
argument to our functions. For example, we would define 
; this is the usual interpretation of addition and scalar multiplication of functions.

The real numbers themselves are a vector space, though kind of a trivial one: the
vectors and scalars come from the same set. If we wanted to emphasize the vector-
space-ness, we could use some notation to distinguish between reals-as-scalars

and reals-as-vectors: e.g., .

One vector space can be contained inside another one: . In this case  is called a
subspace of , not just a subset.

Orthogonal and normal vectors

In an inner product space, two vectors  and  are called orthogonal if .
Geometrically, orthogonal vectors form a right angle with one another.

A vector  is called normal if it has unit length: . Two vectors are orthonormal if
they are orthogonal and both are normal.
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Vector space of functions

We mentioned above the example of a vector space whose elements are functions.
Thinking of functions as vectors in a vector space may seem somewhat counterintuitive,
but we actually do it all the time: whenever we graph a function  using a plotting
package, we evaluate  on a grid of points . If there are  grid points, we can
collect the function values into a vector .

The vector  behaves a lot like the original function : we can add together two
functions  and  by adding their vectors  and , and we can multiply a function  by a
scalar  by computing  (whose elements are ). These vector
operations in  operate separately on each coordinate, so they duplicate the
operations of adding and scalar multipying functions, which operate separately on each
possible argument to the function. That is, we can either sample each of our functions
on our grid first, and then do all of the vector arithmetic in ; or we can do all of the
arithmetic in our function space, and then sample the resulting function on our grid. The
result will be the same either way.

The difference between the function  and the vector of samples  is just that the
function contains more information: we can imagine the function as an infinite-
dimensional vector, as if we had sampled it at every possible real number to create a
vector with uncountably many coordinates.

Of course, it's hard to stuff a vector with uncountably many coordinates into the
memory of a computer. So, we'll need to come up with some other strategy if we want to
work with such a vector space. We'll give more examples of how to do this below, but
one nice example is a vector space of polynomials: we can write  for the vector
space of polynomials in one real variable . Elements of this vector space are objects
like
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It's easy to verify that polynomials behave as vectors: e.g., addition and scalar
multiplication behave as expected. But this is an infinite-dimensional vector space: we'll
talk more about dimension below, but for now, imagine representing a polynomial with a
list of its nonzero coefficients. There can be arbitrarily many nonzero coefficients (one
for , one for , one for the millionth power of , and so forth), so we can't place an
upper bound on the number of coefficients required. But, each individual polynomial has
finitely many nonzero coefficients, so we can store and work with polynomials in a
computer without difficulty.

Complete spaces

Above we described how to think of matrices or functions as vectors in a vector space.
We also described how to upgrade a vector space to an inner product space by defining
an inner product . For example,

A useful inner product for matrices is

A useful inner product for functions  is

There are often multiple ways to define an inner product for a given vector space.
For example, the usual inner product for  is . But for any
matrix , we can define a new inner product . This is called a
Mahalonobis inner product. (To be precise, we require that  be square and have an
inverse; see below for definitions.)

For another example, there are many standard inner products for function spaces,
in addition to the one above. We'll see a few below.

For general spaces we typically use the angle-bracket notation for inner product, to
distinguish from the dot notation for the standard inner product in .

As always, once we have an inner product, we can define a norm . Given
this norm, we reuse the usual definitions for convergence:

A sequence  is a Cauchy sequence whenever  as 
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.

A sequence converges to a vector  whenever  as .

We say that an inner product space  is complete if any Cauchy sequence  in 
converges to some vector . A complete inner product space is often called a
Hilbert space, after the mathematician David Hilbert.

Almost all of the vector spaces that we deal with in ML will be complete inner product
spaces, so that we don't need to worry so much about checking all of the above
properties. But the properties are worth keeping in the back of our minds, since they can
cause algorithms to fail in inconvenient ways if we're not careful.

In case it helps to have a counterexample in mind, one good one is , the vector space of
length-n tuples of rational coordinates. This is an inner product space if we take our scalars to be
rational and adopt the standard dot product. But this space is not complete: the limit of a Cauchy
sequence of rational numbers is potentially irrational. For example, the limit of the sequence 

 is .

Another good one is , the vector space of polynomials in a real variable . We can augment
this space with an inner product; e.g., we can define  to be 1 when  and 0 otherwise,
and extend to arbitrary polynomials by linearity. But, because polynomials can have unbounded
degree, we can make a Cauchy sequence that never converges: e.g.,

. The distance between successive elements of this
sequence is , so it is a Cauchy sequence. But it doesn't converge to any polynomial: any
polynomial that we might claim to be the limit has some finite degree . But that means that it
could never be close to any term in our series of degree greater than . In particular, the closest a
degree-  polynomial can get to one of these terms is a distance of at least  — contradicting
the statement that our degree-  polynomial is the correct limit.

If we have an incomplete inner product space , we can always construct a complete
inner product space  that contains . The new space is called the completion of .

Span

Given a list or set of vectors , their span is the set of all their linear combinations:

Note that the set-builder notation discards duplicates: if  for two
different lists of weights  and  and vectors  and , we only include the linear
combination vector once.
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The span is a vector space: we can add any two vectors in the span by adding their
linear-combination weights, and scalar-multiply a vector in the span by scalar-
multiplying its weights. If the elements of  come from some vector space , then the
span is a subspace of : . For example, if  and the elements of  are
nonzero 3-element vectors, then the span of  is a line or a plane in .

Note that the above definition makes sense even if  has infinitely many elements: we
include all linear combinations of finitely many elements of . This is sometimes called
the finite span to avoid ambiguity.

Functions on vector spaces

We've seen that we can define many different vector spaces, with many different
properties. Given all of these vector spaces, it makes sense to look at functions that
map between them. For example:

We could define a function  that takes a 2d vector and rotates it 
clockwise around the origin.

Or, we could define a function  that extracts the first and fourth
components of a vector (discarding the second, third, and fifth).

Or, if  is the function space we defined earlier (the completion of the span of all
functions of the form ), we could define a function  that
evaluates a function at some fixed input . That is,  for any .

When dealing with functions like these, it's a good idea always to keep track of the types
of expressions. Type-checking like this can catch lots of simple errors: for example, with
the definitions above,  makes sense as long as . But, the expression 
doesn't make sense, no matter what the type of  is.

Functionals, operators

There are two special names that it's worth knowing for specific kinds of functions
between vector spaces. First, if the value of the function is a real number, the function is
called a functional. (The same is true for a complex-valued function on a complex vector
space, and similarly for any other scalar field.)

Second, a mapping from a vector space to itself is called an operator: e.g., the "rotate 
" function above is an operator on . Or, the differential  is an operator on a vector
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space of functions, mapping a function like  to another function like . (Actually it's
many overloaded operators, since we can define many different notions of derivative on
many different function spaces; we'll be more precise later.)

Sometimes people will also use the word operator for a function from one vector space
to another; here we'll try to reserve it for a mapping from a vector space to itself.

Linear functions

A function between vector spaces  is called linear if it satisfies

for all vectors  and all scalars . That is, we can take addition and scalar
multiplication in the input space  and turn them into addition and scalar multiplication
in the output space .

Another way to say the same thing is that  is a vector-space homomorphism. A homomorphism
is a function that preserves structure — in this case the behavior of the key vector-space
operations of addition and scalar multiplication.

We've already seen some examples of linear functions: e.g., point evaluation is a linear
functional on the vector space , since for instance . And, the
differential  is a linear operator, since for instance  (the sum
rule). Another well-known example of a linear operator is multiplication by a matrix: if 

, then the function  defined by  is linear.

If  is a linear functional, and if  is a complete inner product space, then there always
exists some vector  such that  for all . This property — that every linear
functional can be implemented as an inner product — is another one of the useful properties of 

 that extends to more-general spaces.

One common source of confusion is the difference between linear and affine functions.
Consider the function , where . Its plot is a line, but if we check the
above definition,  is not linear: for example, , but . Instead 

 is affine: it is a linear function plus a constant.

Coordinates

So far we've mostly been talking about vectors as opaque objects: the only operations
they support are addition and scalar multiplication (and sometimes inner product and
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limit). This is in contrast to the usual practice for the vector space , where we think of
a vector as being a tuple of real numbers. In this latter view, vectors support an
additional operation, indexing: we can ask for (say) the seventh coordinate of a vector in

.

The first view above is called coordinate-free or abstract, while the second view is
called concrete. We can think of these as different data types: the abstract vector space
type does not support indexing, while the concrete vector space type does.

Usually, it's better to use abstract vectors in proofs, since that way the proofs work for
any vector space, not just . But if we want to manipulate vectors on a computer, we
need a concrete representation.

Such a concrete representation is called a coordinate system. An example of a
coordinate system is a map, like on the screen of a GPS device: the abstract vector
space is the set of positions for a small portion of the earth's surface (say, the portion
within five miles of the professor's house), while the concrete vector space is the space
of pixel coordinates for the map image.

More precisely, the abstract vector space is a tangent space to the earth's surface: it extends
infinitely far in any direction, but it's only a decent approximation to the earth in a local region.
And the concrete vector space that represents the map image also extends infinitely far in any
direction, but we only define the actual image on a local region of this space: e.g., we don't give
RGB colors for pixels with negative coordinates.

A coordinate system is a mapping from an abstract vector space to a concrete one. The
mapping has to be linear, as defined above. And it must be homogeneous: the zero
vector in the abstract space must map to the zero vector in the concrete space. Finally,
it has to be invertible: no two distinct vectors can have the same coordinates. Together,
these properties mean that scaling or adding vectors is the same as scaling or adding
their coordinates.

Typically there are many (infinitely many) possible coordinate systems we can use for a
given abstract vector space . Some might be better or worse than others for a given
purpose; we'll give examples later of why this might happen. But it's important to
remember that the original vector space  is independent of the coordinate system we
use for it. So for example, we might have two different maps of the area around the
professor's house; these maps might have different orientation and scaling, and so the
concrete coordinates of the professor might be different in the two maps. But of course
the professor's location (a vector in the abstract space) stays the same, no matter which
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coordinates we use to represent it.

Basis

To go from abstract to concrete, we need a basis for our vector space . A basis is a set
of vectors  with two properties:

It spans our vector space, . That is, any vector in  can be represented
as a linear combination of basis vectors from : for any , there exist scalars 

 such that .

It's minimal: removing any element from  destroys the previous property.

The elements of  are called basis vectors.

Given a basis, we can use the scalars  as a concrete representation of the
abstract vector . That is,

For example, in a 2d map, we could pick as our basis one vector pointing up in the
image, and one vector pointing right, with a length that corresponds to one meter in the
physical world. Or we could pick one vector pointing north in the image, and one
pointing east, with a length that corresponds to 1km in the real world. We could even
pick one vector pointing southeast and one north-by-northwest — although this would
violate the usual convention of preserving lengths and angles from the real world in our
map coordinates (see the description of orthogonormal bases below).

It's a fundamental theorem that any vector space has a basis, and that every basis has
the same number of basis vectors (though this number might be infinite). The number of
basis vectors is called the dimension of the corresponding vector space. This is the
same idea of dimension that we're used to: a line is a one-dimensional vector space, a
plane is a two-dimensional vector space, and so forth.

Coordinate representations in a given basis are unique: given a vector , there's
only one linear combination of basis vectors that yields . (We'll give an algorithm for
computing the coordinates below.)

As mentioned above, the coordinate representation depends on which basis we pick: if
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we choose a different basis , the representation of  can look totally different. It's
important to remember that  hasn't changed, only our representation of it.

It's slightly tricky to define basis and dimension in infinite-dimensional vector spaces. The
difficulty comes in whether to allow convergent infinite sums of basis vectors. (Our above
definition does not.) It only makes sense to allow infinite sums if we have an appropriate notion of
convergence; we don't always have such a notion, but we do in many important cases, including
all complete inner product spaces. Depending on whether we do allow infinite sums, the size of a
basis might be different.

Linear independence

We said above that a basis has to be minimal: if any vector  can be removed from 
while keeping , then  is not a basis. More generally, for any list of vectors 

, if we can remove some vector  without changing , the vectors in  are
called linearly dependent. This means that  can be expressed as a linear combination
of the other vectors  for . On the other hand, if no vector can be removed
from  without changing , then the vectors are called linearly independent.

For example, the vectors

are linearly dependent. One way to show this is that we can represent the last vector as
the sum of the first two. On the other hand, any two of these vectors are linearly
independent.

Geometrically, linear independence is a generalization of being collinear or coplanar:
that is, we are asking whether any vector lies in the line, plane, or other subspace
defined by the other vectors.

Orthonormal bases

If the elements of a basis  are orthonormal (that is, if  when  and 
 for all ) then we say that  is an orthonormal basis. Orthonormal bases are

important since they preserve lengths and angles. That is, if  are abstract
vectors and  are their concrete representations, then .

This is a crucial property if we're working in an inner product space. For an arbitrary
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vector space, lengths and angles might not even be defined, so there's no point in trying
to preserve them. But for an inner product space, lengths and angles are an intrinsic
property of the space. So, if we have a non-orthonormal basis for an inner product
space, and if we want to use it to build a concrete representation, we need to be careful:

With no additional effort, we preserve the effect of addition and scalar
multiplication.

With the coordinate representation described below, we preserve application of
linear functions.

But the standard inner product in  will give us wrong answers for the lengths and
angles between vectors. Instead, if we want to reason about lengths and angles,
either we need to switch to an orthonormal basis or we need to define a
nonstandard inner product for . (As it happens, we can use a Mahalonobis inner
product; see above for the definition.)

Given any basis for an inner product space, we can construct an orthonormal one. One
method for doing so is Gram-Schmidt orthonormalization.

Example: linear classifier

What can we do with a vector space? One simple use is a linear classifier. For example,
here's a linear classifier in the plane: we split  into two pieces, one part on each side
of a line.

We can represent such a classifier as a vector  and a threshold : we classify

Rn

Rn

R2

w ∈ R2 b ∈ R

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process


a point  as

 if  (i.e., if  is on the side of the line where  points)

 if  (i.e., if  is on the opposite side of the line, in the direction that 
points)

The function  is called a discriminant function for our classifier: it
discriminates between the two possible classes based on the sign of . Since 
represents a line, we call it a linear discriminant. The line  is called the
decision boundary or the separator.

Note that the discriminant function  is affine not linear. It's still traditional to call this type of
classifier a linear discriminant. This terminology mismatch is unfortunate; but if desired we can
avoid it by switching to homogeneous coordinates (defined below).

Geometrically,  is normal (orthogonal) to the separator, so it tells us the orientation of
the separator. Another way to interpret  is as the direction of steepest increase of 
(i.e., the gradient).

The sign of  tells us which side of the separator corresponds to which class: the class
that's on the side where  points is called the positive class, since it's in the direction of
increasing , while the other side is called the negative class, since it's in the direction
of decreasing . Flipping the sign of  exchanges the positive and negative classes.

Finally,  and the length of  combine to tell us how far the separator is from the origin:
the closest distance from the origin to the separator is . So, scaling up  moves
the boundary toward the origin, while scaling up  moves the boundary away from the
origin. (This system is redundant, so sometimes we remove an unnecessary degree of
freedom by either fixing  or fixing , and using the other parameter to shift
the separator toward or away from the origin.)

There are lots of ways to build a linear discriminant, but one reasonable one is the Fisher
linear discriminant: suppose we are given a data set containing  points of the  class
and  points of the  class. Call these points  and . We calculate the mean of each
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Then we draw a line between these class means, and let  and  represent the
perpendicular bisector of this line:

(Exercise: convince yourself that these equations actually do give us the perpendicular
bisector.)

The above recipe is actually a special case of the discriminant that Fisher proposed. In the
general Fisher discriminant (which is quadratic, not linear), we estimate the variance of each
class, and use these variances to shift and reshape the boundary between classes.

Feature transforms

Linear classifiers are really useful, and they can be very efficient to find and work with.
But what if we can't separate our classes with just a line?

A plain linear classifier will clearly fail here. But linear classifiers are so convenient that
we'd still like to use them if possible.
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The answer is a feature transform: instead of using a linear classifier in the original
vector space  (here ), we map our points to some other vector space , called
the feature space, and use a linear classifier in  instead. If the feature transform 

 is nonlinear, then the overall classifier is nonlinear, even if we use a linear
classifier in . That is, the overall discriminant function for 

is nonlinear if  is nonlinear, even if the discriminant in  is linear:

In the plot above, suppose we take  and

The separator  will then take the form

This is a conic section: a circle, ellipse, parabola, or hyperbola. With a more general
separator like this, we can classify all of our points correctly — much better than a linear
separator.

The advantage of a feature transform is that we can now use all of our knowledge of
linear classifiers to help us build a nonlinear classifier. For example, we can build a Fisher
linear discriminant by taking the class means in feature space:

From here, the exact same formulas as before get us  and .
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One really simple but useful feature transform is homogeneous coordinates: the feature
function  just tacks a constant coordinate onto the end of our input vector. For
example,

This transform lets us turn an affine discriminant function into a truly linear one: if our
original discriminant was , and if we write  for the stacked vector

then our discriminant function becomes

h

h =[( 2.71
−4.26

)] ⎝
⎛ 2.71

−4.26
1 ⎠

⎞

w ⋅ x − b v

( w

−b
)

v ⋅ h(x) = w ⋅ x − b


