
Logic and computation

First-order predicate logic, as we've defined it so far, is very expressive. To
measure how expressive, one approach is to look at the kinds of computations
it can encode.

For one example, it's easy to encode a finite automaton in first-order logic: we
assume types and , with functions and
that return the first character and all but the first character, respectively.

We'll talk more below about how to define the type.

We define a type and a predicate . We assert
 for an initial state and a string ; the idea is that we want to

test whether is accepted by the automaton. For each possible transition in our
automaton, if the transition goes from state to state and consumes a
character , we assert

The idea is that the second argument of the predicate tells us what
part of the string remains to be processed.

We finally test acceptance by asserting for final states , and checking
whether

where is the empty string. The valid strings are the ones for which we can
prove acceptance: that is, the ones that provably satisfy

Since we can encode a finite automaton, we know that first-order logic can
accept at least regular languages. But in fact we can go much further: we won't
prove it here, but a generalization of the above construction can simulate a
Turing machine. So, first-order logic can accept r.e. languages — that is, first-
order logic can accomplish any computation that we believe to be possible in
any formalism.

char string first(s : string) rest(s : string)

string

state reachable(s : state)

reachable(s , t)0 s0 t

t

s s′

q

(reachable(s, t) ∧ first(t) = q) → reachable(s , rest(t))′

reachable

final(s) s

∃s. reachable(s, ϵ) ∧ final(s)

ϵ t

reachable(s , t) →0 ∃s. reachable(s, ϵ) ∧ final(s)

First-order logic is not, however, the most convenient programming language.
In the remainder of this set of notes, we'll try to remedy a couple of of its
shortcomings: we'll give a more convenient way to talk about computation, and
we'll add a way to define new, expressive types called inductive types. Both of
these additions will pave the way for us to discuss iteration, recursion, and
runtime.

Models of computation

There are actually multiple ways to express statements about computation in
logic. At some level they are all equivalent, but they can differ greatly in how
convenient they are to work with.

The first way is what we did in the previous section: we can define types and
predicates that let us work with automata, like finite automata or Turing
machines. Unfortunately, there's a reason that there are no popular
programming languages based on Turing machines.

The second way is to add extra semantics to the reduction rules that we've
already defined. Each reduction represents a step in a computation — for
example, calling a function on a given list of arguments, or extracting an
element from a given tuple. The main thing we need to add is to define an order
of evaluation: for example, when calling a function, do we greedily evaluate the
arguments first, or do we lazily pass them into the function as-is for later
evaluation? Once we define an order of computation, we get a fairly general
functional programming language. (A functional language is one where the
operations don't have side effects like allocating or writing to memory.)

That brings us to the third way, which is the last one we'll discuss: we can
define and reason about the state of a model of a computer. For example, our
model computer could have a heap where we can allocate memory cells that
store different types of values; it could have a stack, a stored program, and a
program counter; and it could have input and output channels. The program
could be in a high-level language like Python, or a lower-level one like a
simplified assembly language. (In the latter case the model is often called a
virtual machine.) Given this model computer, we define rules that let us update
the state: at each update, we execute an instruction from the stored program,
and the instruction can read or write memory, update the program counter to

jump to a new subroutine, and so forth. This is probably the most common and
familiar representation for making logical statements about computation.

For our purposes, we'll mainly use the second way. But we won't give complete
low-level details, since those would take up more time and space than we want
to spend in this course. Instead we'll give a more informal semantics for
computation, with the understanding that it would be possible to expand out
the details — that is, we could build on our informal semantics to make a
complete language with well-defined inference rules, so that we have a full
model of computation within our logic.

The idea that logic can encode computation (and vice versa) is an old one. It turns out
that there is a very deep connection between these two formalisms: effectively any
feature of a logical language can be translated into a feature of a programming
language, and vice versa. This connection is called the Curry-Howard
correspondence.

Computation syntax

We'll write programs in a simple programming language, using a notation that is
similar to what we've been using so far. As mentioned above, we will wind up
with a functional programming language (no assignments or other side effects).
All of our computation will be expressed as reduction of terms, with a couple of
small exceptions described below.

In more detail, we'll use our language of functions, tuples, etc. We'll pick a
greedy, left-to-right evaluation order for terms. That is, we simplify the inputs
to a reduction as much as possible before applying the reduction, and we work
on subexpressions in the same order that they appear in our program. For
example, in a function application like , we first evaluate in that
order, then substitute the expressions for and into the expression for .

Since we mostly won't be using propositions, we won't provide a general-
purpose evaluation order for them. Instead we'll specify special-purpose rules
when they become relevant.

To be complete, we would probably want to define rules for shortcut evaluation. For
example, for tuple extraction (like) and for case statements on union types, only
some of the subexpressions are relevant, and we would want to avoid evaluating
irrelevant subexpressions where possible. Instead of defining rules, we'll specifically

f(a, b) f , a, b

a b f

first

mention shortcutting if it is relevant.

To make it easier to express programs, we'll add two additional syntaxes:
named functions and a version of an if-then-else statement. For named
functions, we'll write

to be equivalent to

together with the evaluation strategy that we reduce to when we can
(and never go in the opposite direction). Here is the function name, and is
the function body; may contain references to and other function names. For
simplicity we require instances of to occur only in the global scope.

For if-then-else, we'll write

to mean that we find the first predicate out of that is true, and return
the value of the corresponding term from . We require each to
reference only current program state (stored values that are reachable from
variables in scope), so that it can be evaluated immediately. We require to be
just , so that the overall value of the if-then-else is always well-defined.

The if-then-else syntax is equivalent to defining a new value with rules

together with an evaluation strategy that evaluates the guards in order until
one returns true, followed by the selected term , and substitutes the
evaluated in place of the if-then-else statement.

Note that there are two places where we have allowed propositional expressions into
our program — inside function definitions as and inside if-then-else
statements as guards. We have defined an evaluation order for both situations.

Using the above syntax, we can for example write a recursive program to
calculate Fibonacci numbers:

def f(x) ϕ

f = λx. ϕ

f λx. ϕ

f ϕ

ϕ f

def

p →1 v ∣1 p →2 v ∣2 … ∣ p →n vn

p … p1 n

v … v1 n pi

pn

T

v

p →1 (v = v) (p ∧1 2 ¬p) →1 (v = v) …2

pi

vi

vi

f = λx. ϕ

def fib(x) [

Using our greedy evaluation order, we would then compute as follows:

Note that it will be expensive to evaluate this way, and this is not even
close to the best algorithm for computing ; we'll say more about this
observation later.

Other loops

As we saw with the program for , our programming language has no trouble
with recursion. We can use recursion to simulate all of the familiar types of
loops — , , etc. But for simplicity we'll add syntax to represent a kind of
loop. This includes once-per-iteration updates to loop variables, which we write
as something like . It's important to remember, though, that these are
not real assignments: we will instead simulate them with recursion. More
specifically, our loop will have four parts: an initialization of the loop variables, a
test for completion, an update to the loop variables, and a return value. We'll
write it as

For example, we can write a better program for calculating Fibonacci numbers:

def fib(x) [

(x ≤ 1) → 1 ∣

T → fib(x − 1) + fib(x − 2)

]

fib(5)

fib(5)

fib(4) + fib(3)

fib(3) + fib(2) + fib(2) + fib(1)

fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + 1

fib(1) + fib(0) + 1 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8

fib(x)

fib(x)

fib

for while

i ← i + 1

with i ← 1

while i ≤ n

do i ← i + 1

return 2i − 32

def fib(x) [

The loop above would reduce to the equivalent recursive program

If we trace out the evaluation of the new version of , we can see that it
runs much more quickly than our previous version for large values of .

Inductive types

Realistic programs don't just work with integers: they define and work with
complex types like trees and heaps. These are called inductive types, since we
reason about them using a version of induction (defined below). We construct
and work with inductive types using recursion or iteration, taking advantage of
the computational idioms defined above plus a couple more we will define
below. For example, we build big trees by putting together littler trees, and we
can traverse these trees with recursive functions like the function defined
below.

To handle inductive types, we need appropriate definitions and inference rules.
We'll define an inductive type by providing a list of constructors, i.e., ways to
build a value of that type. For one example, we could define a string as

This definition gives two ways to construct a string: either it can be empty (in
which case we don't need to provide any arguments), or it can be a character
followed with a shorter string (using as short for "concatenate", with

def fib(x) [

(x ≤ 1) → 1 ∣

T →

with (a → 1, b → 1, i → 2)

while i ≤ x

do (a, b, i) ← (b, a + b, i + 1)

return b

]

def loop(a, b, i) [

(i ≤ x) → loop(b, a + b, i + 1)

T → b

]

loop(1, 1, 2)

fib(x)

x

sum

type string = empty() ∣ cat(f : char, r : string)

cat

arguments for first and for rest). So the string "hi" would look like

For another example, we can define a binary tree with two constructors:

This definition says that a can either be a containing a single or a
 containing a pair of s. Each of these s can then itself be a single

or a pair of s, and so on. For example, a tree could be
, which looks like this:

In each type definition, the constructors like , , , and become
new functions. Each one has its own output type: , ,

, and . These new types are defined to be subtypes of
 or ; in fact, and behave like union types, with one case per

constructor. The constructor names are arbitrary, but each constructor must be
distinct from the others in the same type definition (either by name or by
argument types).

In a fully-detailed logical system, we'd want to give convenient and expressive scoping
rules for type names, and possibly allow mutually-recursive type declarations. To keep
things simple, we'll instead just require all type declarations to happen in the global
scope, and we'll say that each type declaration may reference itself and any previously
declared types. Duplicate names shadow previous uses, and can be shadowed by
subsequent uses.

Every inductive type must have at least one base case: a constructor that
doesn't take any objects of type as input. The constructors that aren't base
cases are called inductive.

Our intent is that each instance of an inductive type should be finite; that is, the
recursion must eventually bottom out by choosing a base case constructor. We'll say
more below about this property.

To use a tree, we have to access its components, with potentially different

f r

cat(’h’, cat(’i’, empty()))

type tree = leaf(v : int) ∣ node(l : tree, r : tree)

tree leaf int

node tree tree int

tree

node(leaf(7), node(leaf(6), leaf(5)))

empty cat leaf node

empty() cat(char, string)

leaf(int) node(tree, tree)

string tree string tree

T

T

behavior depending on how the tree was constructed. To access components,
we'll generalize the syntax for function definition: we allow functions like

The function header means that we take an argument of type
 and bind to the stored inside. Similarly, we could have a header

 which extracts and from an argument of type
. This kind of argument syntax is often called a destructuring

bind, since it pulls arguments out from inside a specified structure.

We can use destructuring bind to pull out parts of a value of an inductive type, and
then use constructors to include these parts in another value. Naively we might expect
to have to do a deep copy in this case, to avoid sharing structure. But since our
language is functional, it's perfectly safe for multiple instances to share memory. This
can be important, since it could be expensive to do deep copies everywhere. It does
however mean that garbage collection or some similar strategy becomes necessary if
we want to avoid memory leaks.

The process for handling different constructors is very much like the process
we've already seen for accessing a union type: we need to treat each
constructor as a separate case. To do this, we'll generalize the case statement:
we define one function to handle each constructor, and switch between them
depending on the actual type of the argument.

For example, let's write a function of type to calculate the sum
of all the leaves in a tree. At a leaf we just want to return the value stored there.
At an internal node we want to recursively apply to the left and right
children, and add the results.

The requirements for this new kind of case statement are the same as what we
had above for cases on ordinary union types: the functions we combine with
all have to have the same return type, and there must be exactly one case for
each constructor. In our example, the return type for each case is . The two
cases cover the two ways to construct a : as or as .

λ

λ leaf(v : int). v

λ leaf(v : int)

leaf(int) v int

λ node(l : tree, r : tree) l r

node(tree, tree)

sum tree → int

sum

def sum(t : tree) (

λ leaf(v : int). v ∣

λ node(l : tree, r : tree). sum(l) + sum(r)

) t

∣

int

tree leaf(int) node(tree, tree)

To go with these new kinds of syntax, we have corresponding reduction rules.
We'll state them informally, since they are essentially the same as the rules for
function reduction and union reduction.

The rule for destructuring bind is:

Destructuring function reduction: we apply
just like an ordinary function, by substituting the corresponding argument
values for all free occurrences of .

The rule for case statements is:

Inductive case reduction: if has an inductive type, we can replace
 by one of , depending on which constructor

was used to build .

For both of these rules, our evaluation order is greedy and left-to-right, and we would
want to define rules for shortcut evaluations. All of these properties are just like the
ones for ordinary function application and union case statements.

For example, if is a that was built as , and if begins
with , then we can combine the above two reduction
rules to replace by the body of , and replace and in the body of
by the left and right children of .

Adding inductive types doesn't increase the power of first-order logic, in the sense
that we can't encode any computations that we couldn't encode before. But inductive
types make it much easier and clearer to encode some computations; without them,
we'd have to simulate the same ideas using base types and functions. This is possible
but less convenient.

Structural induction

To prove a property for objects of an inductive type , we can use a
generalization of the induction principle called structural induction. Let
be a predicate. Then:

Structural induction: consider each constructor for type . If is a base
case constructor, we must prove when is constructed using . If is
an inductive constructor, we may assume for each argument to
that has type ; we must then prove when is constructed using . If

λ constructor(x :1 T , x :1 2 T …)2

x , x , …1 2

χ

(ϕ ∣ ψ ∣ …)(χ) ϕ(χ), ψ(χ), …

χ

χ tree node(l : tree, r : tree) ϕ

λ node(l : tree, r : tree)

(ϕ ∣ ψ)(χ) ϕ l r ϕ

χ

M

p(x : M)

c M c

p(x) x c c

p(y) y c

M p(x) x c

we can do the above for all constructors, we may conclude .

Example: heaps

A heap is a binary tree that stores a number at each node. The numbers are
required to satisfy the heap property: at every node with children , the
value at is at least as large as the values at .

We can declare a heap as an inductive type:

We can extract the value at a node by using a case statement to make a
function that maps to :

And we can state the heap property:

Here the function of type computes the maximum of two
integers:

The heap property implies that the largest number in a heap is at the root. So,
based on the above assumptions and definitions, we can use recursion to
extract the largest number from a heap (without depending on the heap
property), and we can use structural induction to prove that this number is
always equal to the value at the root.

In the proof we'll need the following easy-to-derive property of :

To extract the maximum element of a heap recursively, we write:

∀x : M . p(x)

x y, z

x y, z

type heap = leaf(v : int) ∣ node(v : int, l : heap, r : heap)

value(x) x : heap int

def value(x) [(λ leaf(v : int). v) ∣ (λ node(v : int, l : heap, r : heap). v)] x

∀x : heap. [(

(λ leaf(v : int). 0) ∣

(λ node(v : int, l : heap, r : heap). v − max(value(l), value(r))

) x] ≥ 0

max (int × int) → int

def max(x, y). [(x ≥ y) → x ∣ T → y]

max

∀x, y : int. (x ≥ y) → (max(x, y) = x)

def maxheap(x) [

To prove the max is at the root, we use structural induction with the induction
hypothesis

There is one base case, which is when is constructed as . In this case,
 and both follow their first case. So, they both function-

reduce to , which means that we can use reflexivity of to show .

There is one inductive case, which is when is constructed as
. In this case we get to assume that and satisfy

The case statement for follows its second case and reduces to . So,
we just need to show that also reduces to .

The case statement for follows its second case,

which is equivalent to

by substitution of equals with the induction hypothesis.

From our assumptions (namely the second case of the heap property), we have
that satisfies

which means (via the property of max that we mentioned above) that

We've now shown that and . So, via reflexivity and

def maxheap(x) [

λ leaf(v : int). v ∣

λ node(v : int, l : heap, r : heap).

max(v, max(maxheap(l), maxheap(r)))

](x)

value(x) = maxheap(x)

x v : int

maxheap(x) value(x)

v = p(x)

x

(v : int, l : heap, r : heap) l r

value(l) = maxheap(l)

value(r) = maxheap(r)

value(x) v

maxheap(x) v

maxheap(x)

max(v, max(maxheap(l), maxheap(r)))

max(v, max(value(l), value(r)))

x

v ≥ max(value(l), value(r))

max(v, max(value(l), value(r))) = v

value(x) = v maxheap(x) = v

substitution of equals, we get

which is what we needed to prove. So, we conclude

as desired.

Exercise: write a function that removes the max value from the root of a
heap, and returns this max value along with an updated heap that contains
the remaining values. Prove that the function maintains the heap property.

Structural induction and plain induction

Structural induction is a strict generalization of induction on the natural
numbers. To see why, note that we can define natural numbers as an inductive
type:

With this definition, the inference rule for structural induction looks exactly like
the inference rule we defined earlier for induction on the natural numbers.

As we noted earlier, classical first-order logic can't rule out non-standard numbers —
numbers that can't be reached by repeatedly applying the successor function starting
from zero. Instead, the rule of induction just tells us that any non-standard numbers
must satisfy the same predicates that the standard ones do. Similarly, for inductive
types, first-order logic can't rule out non-standard instances — instances that can't be
constructed recursively from base cases. These non-standard instances aren't usually
harmful; but if we have to, it is possible to rule them out by moving away from the
classical first-order version of our logic.

value(x) = maxheap(x)

∀x : heap. value(x) = maxheap(x)

type N = zero() ∣ S(x : N)

