
Complexity

Usually there are many different ways to compute the same result — different
algorithms with identical input-output behavior. Often, though, the different
algorithms can behave very differently in other ways: memory use, runtime, etc.
Complexity is the study of ways to measure an algorithm's usage of resources
like these.

As an example, we saw two different ways to compute the Fibonacci function,
one of which was clearly much faster than the other. We'll see below how to
make this comparison precise.

The first step in a complexity measurement is to decide what resource we're
measuring and how to measure it. A few examples are

Wall-clock time. This resource can be hard to measure, and can differ
greatly if we run the same algorithm on different computers. So we don't
often use wall-clock time directly.

Instruction count. This can also differ substantially: we can implement
essentially the same algorithm in slightly different ways and come up with
different answers. And, if we compile the same high-level code for different
architectures, we also will get different instruction counts.

Operation count. Instead of counting low-level instructions, we can count
higher-level groups of instructions. For one example, we can count
floating-point operations, or FLOPs: the number of times we add, subtract,
multiply, or divide two real numbers. If we count only FLOPs, we get to
ignore the details of branching, subtroutine calling, etc. For another
example, we can pick a standard set of functions like and , and
count how many times we call them. The operation count approach has the
advantage that we can hide a lot of differences between different
computers and different architectures. But it has the disadvantage that we
can miss important information in the abstraction: e.g., if we count calls to
trig functions like and , but our algorithm spends most of its time
copying memory or evaluating conditionals for branches, we'll get an
inaccurate idea of what's going on.

Memory accesses. We can count how many bytes of memory we load and
store. This approach again has the advantage of being relatively consistent

cos exp

sin cos

across computers (or at least computers with similar overall architectures
and word lengths). But, it can measure something very different from
operation count: there are algorithms that use a relatively smaller amount
of memory but perform many operations per word, as well as algorithms
that use a relatively larger amount of memory with fewer operations per
word.

Parallel work or span. If we are executing our algorithm on multiple cores or
multiple networked computers, we can still measure the total operation
count — this is often called the parallel work. But we can also measure the
longest string of operations that we have to do in sequence, with each
operation depending on the results of the previous one — this is called the
span or the depth, and it limits how much benefit we can get by throwing
more processors at the problem.

Parallel communication. Just like the sequential case, we can measure how
many bytes we send to and from memory; but we can also measure how
many bytes we send between different processors.

And more: we can measure other resources like information sent across a
network, information stored to persistent storage, or the number of times
we need to consult a human for input. There's not really a limit to what we
can talk about: if someone is concerned about a resource, we can probably
figure out a way to measure it.

The second step in measuring complexity is to relate the resource usage to
how hard the problem is that we're trying to solve. After all, it doesn't seem fair
to compare two algorithms' resource usages unless we standardize problem
difficulty. Just like above, there are a lot of different ways we can measure
difficulty. Here are a few common and useful ones:

Problem dimension. In a lot of problems we're working in a vector space of
a given dimension, and the problem gets harder as we move to higher
dimensions. For example, if we're multiplying two matrices, we expect it to
take longer in than we do in .

Number of inputs. Instead of looking at the dimension of the problem, we
can look at the amount of data required to specify a problem instance. This
captures the intuition that we can have more or less complex inputs even if
their maximum dimension is fixed: e.g., in , a vector takes 100 numbers
to specify, while a matrix takes 10000, and a 3-mode tensor contains a
million numbers.

R1000 R10

R100

Input bit length. It might not be fair to compare a matrix made up of small
integers to a matrix where every entry is specified to 64 bits of precision.
Even worse, a real number can theoretically store an infinite number of bits
of information (though in practice the methods we use for working with
reals will have a much smaller limit). To compensate, we can count the total
number of bits required to specify the problem input. This is probably the
most general and widely used difficulty measure, since we can apply it to
almost any problem. But it's less intuitive to work with than some other
measures.

Condition number. We saw earlier that gradient-based optimizers take
longer to work when the objective function has widely varying curvature in
different directions. We introduced the condition number to measure this
property. This is a problem-specific difficulty measure: the condition
number isn't relevant unless we have a function whose condition we can
measure. But as it turns out, there are a lot of problems where conditioning
is relevant, and a lot of algorithms whose complexity depends on
conditioning.

Other. As with resource measures, there are effectively infinitely many
difficulty measures, tailored to different kinds of problems we might want
to solve. Some examples are the diameter of a graph, the mixing time of a
Markov chain, and the degree of a polynomial.

Scaling

Often the thing we care about most is not the precise resource usage — as
mentioned above, the cost of a resource can depend a lot on the details of the
computers we use. (And we can hope that future computers continue to get
more powerful, so that the cost of executing an instruction or accessing
memory continues to decline.) Instead, we care more about how resource
usage scales with difficulty: this is a much stronger determiner of how difficult
a problem we can solve.

To see why, imagine two algorithms for solving linear systems. For
concreteness, say we're working in dimensions, and the linear system has
nonzero coefficients. And, let's say that . With these assumptions, the
first algorithm takes FLOPs. The second one takes
FLOPs.

n m

m = 5n

n3 4m log n =3 20n log n3

In case you're interested, under some assumptions there do exist linear solvers that
take approximately this many operations. The second one is based on a famous result
of Spielman and Teng for a class of matrices derived from large graphs.

If we plot the FLOP count vs. problem size, we see some interesting things: if
we look at small problem sizes, the first algorithm is much better. But if we
zoom out to look at bigger problems, the situation changes: now the first
algorithm is getting beaten badly.

To see just how badly, suppose we have a budget of one petaFLOP, i.e.,
FLOPs. (Right now, depending on the problem, it's order-of-magnitude
reasonable to guess a teraFLOP per second on reasonable hardware; if we do
this for 1000 seconds we get a petaFLOP.) The first algorithm can then handle

 up to 100,000 — not too shabby. But the second algorithm can handle up to
about billion. This difference is night and day — especially if the for the
problem we care about happens be around a million.

There's another, smaller reason that we care more about scaling than about
precise resource usage at a given problem size: the resource usage isn't
necessarily a smooth function. Lots of not-so-relevant details can cause jumps
or dips. For example, we might get a jump when our problem exceeds the size
of some level of our memory hierarchy (leading to a jump in the use of slower
memory), or a dip when our problem is some fortunate size like an exact power
of 2. While details like these do matter, especially when they happen to the
problem instance we care about, they don't have a long-term effect on the
most difficult problem we can solve.

 notation

To talk about scaling, we'll use a tool called notation, or "big-O". The point of
 notation is to compare the growth rates of different functions like or

, while hiding their behavior at small values of . We'll focus on
nonnegative functions and on .

It's also OK if the function only becomes nonnegative for big enough ; we can modify
the definitions below to account for this case.

When we compare two functions using notation, we find out that one
function eventually grows faster, slower, or about the same as the other. There
are two big caveats here:

1015

n n

1.7 n

O

O

O n3

20n log n3 n

n ≥ 1

n

O

"About the same" does not mean exactly the same, nor even the same in
practice. Instead it means that we need a more precise tool to compare.

"Eventually" is a dangerous word: we might have to build a universe-sized
computer before we see the eventually-faster-growing function win.

With those caveats, for any function , we define the set of functions
 as

 is the set of functions such that there exists a scaling factor
 and a minimum argument for which

If , we say " is O of ". The interpretation is that grows no faster
than (eventually, and at the level of detail that we're paying attention to).

You will also see people write to mean . Just be careful to realize
that this is not really an equality: is not a single function, but a set.

There are two important numbers in the definition of big-O: the scaling factor
and the minimum argument .

The scaling factor says what we mean by "grows faster than": grows
faster than only if eventually beats any constant scaling factor applied
to .

The minimum argument encodes "eventually". We don't care about
behavior before ; we just care that, after some point, the inequality holds.

For example, let . We can show

which we say as " is O of " or " grows quadratically".

To see why , we can place a bound on each term of using a multiple
of . For the first term, trivially, . For the second term, we have

 for any . For the third term, we have for any .

Adding these bounds together, we have for any .
This matches the definition of using and .

Of course, we can also show

g(n)

O(g(n))

O(g(n)) f(n)

c > 0 n >0 0

f(n) ≤ cg(n) ∀n ≥ n0

f ∈ O(g) f g f

g

f = O(g)) f ∈ O(g)

O(g)

c

n0

f

g f

g

n0

f(n) = 3n +2 5n + 99

f(n) ∈ O(n)2

f n2 f

f ∈ O(n)2 f

n2 3n ≥2 3n2

n ≥2 5n n ≥ 5 n ≥2 99 n ≥ 10

3n +2 n +2 n ≥2 f(n) n ≥ 10

O(n)2 c = 5 n =0 10

3

and

Exercise: do so.

Given that we know , these latter two results are not very helpful. The
first one loses information: saying is strictly weaker than .
The second one is unnecessarily complicated: there's no need for the constant

 in front of , nor for the lower-degree terms.

Partial order

Big-O is transitive: if and then . So, we can think of
big-O as a generalization of . Just like , it's nice to have notation for the
opposite direction . For big-O, the opposite is :

Unsurprisingly, we also have a notation analogous to : if and
, we write

Unlike , with big-O, it's possible for two functions to be incomparable. An
example is

The ratio between and can be arbitrarily large or arbitrarily small, so
there's no constant factor we can find to bound by a multiple of or by a
multiple of .

Properties of

We can add big-O expressions: if and , then
.

We can multiply big-O expressions: if and , then
.

f(n) ∈ O(n)3

f(n) ∈ O(527n −2 3.14159n + 10)100

f ∈ O(n)2

f ∈ O(n)3 f ∈ O(n)2

527 n2

f ∈ O(g) g ∈ O(h) f ∈ O(h)

≤ ≤

≥ Ω

f ∈ O(g) ↔ g ∈ Ω(f)

= f ∈ O(g)

g ∈ O(f)

f ∈ θ(g) g ∈ θ(f)

≤

f(n) = sin g(n) =2

100

n
cos2

100

n

f(n) g(n)

f g g

f

O

f(n) ∈ O(g(n)) s(n) ∈ O(t(n))

f(n) + s(n) ∈ O(g(n) + t(n))

f(n) ∈ O(g(n)) s(n) ∈ O(t(n))

f(n)s(n) ∈ O(g(n)t(n))

We can do both the above with plain functions as well: if , then
for any function , we have and

.

For any integers , if , then .

All of the above properties follow straightforwardly from the definition of big-O.

Exercise: prove them.

Combining the above properties, we can analyze any polynomial: for example,

The general procedure is that we first drop all terms except the one with
highest degree. (We can justify dropping them with the same proof as above:
we bound these lower-degree terms by a multiple of the highest-degree one.)
The highest-degree term must have a positive coefficient, since we assumed
the function as a whole was nonnegative for large ; we drop this coefficient
(set it to 1) since we can absorb any scalar multiple into .

The same idea works for any sum of terms, not just polynomials. That is, we
only need to keep the largest term, and we can simplify by dropping any
positive coefficient on this term.

Log and exp

After polynomials, the most common functions used with big-O are logarithms
and exponentials. Logarithms tend to arise in divide-and-conquer algorithms;
for example, many sorting algorithms take operations since they
work by recursively splitting a list into two sublists. Exponentials tend to arise
from brute-force strategies: for example, there are bit strings of length , so
if we iterate over all of them, we will take time at least .

The base of a logarithm doesn't matter in big-O, since changing the base
results only in a constant factor difference.

The function grows very slowly: it is for any , even fractional .
In fact, even is .

Because grows so slowly, there's a common variant of big-O that tries to ignore

f(n) ∈ O(g(n))

h(n) ≥ 0 f(n) + h(n) ∈ O(g(n) + h(n))

f(n)h(n) ∈ O(g(n)h(n))

p, q ≥ 0 p ≤ q n ∈p O(n)q

5n +4 3n −3 n + 100 ∈ O(n)4

n

c

O(n log n)

2n n

O(2)n

log n O(n)k k > 0 k

log n
d

O(n)k

log nd

~

log factors instead of just constants: we say when we can scale by
 to beat , instead of just by as in plain big-O.

Exponential functions bring a different wrinkle to big-O notation: they grow so
quickly that we stop being able to ignore some constant factors that we might
want to ignore. For example, is not in : the constant factor is in the
base of the exponent, which is beyond what big-O can hide. For this reason, we
will often see expressions like . This means exactly what it looks like: it's
the set of functions of the form where .

f ∈ (g)O
~

g

c(1 + log n)d f c

3n O(2)n

2O(n)

2g(n) g ∈ O(n)

