
Geoff Gordon

Math Foundations for ML
10-606

Notes and reminders

• HW2 is out

Nonlinear systems
✗ c- lR^ f- c- → pin

fan
)eÑ^

$#D= ex - 1

start w/ X , solve fcx) = 0

dfcx) = f-
'

(X) DX df(×) = ex DX

What is fcxtdx
)?

fcx ,/ 1- f'(4)
DX = 0

df = f'
(x) DX

,

→ "" **

✗z : = × ,
+DX-

f- "" tf?d_×µ§;, , .fi#---f+f'Hdx¥

Newton’s method
f(x) = ex–1

This process is called Newton's method, and it often converges rapidly to a solution of
the nonlinear system . In fact, the fixed points of Newton's method are strongly
related to the solutions of our system: if is nonsingular then a fixed point must
satisfy both equations, and is equivalent to . However, Newton's method
isn't always stable: even if there are good fixed points near our initial guess, our
sequence of guesses might diverge.

If is singular at a fixed point, then we might be in either of the two cases described above:
we might satisfy the two equations but have multiple possible solutions for the second, or we
might not be able to satisfy both equations and have to settle for the least-squares solution. In
the first case, since we're at a fixed point we have to have ; that means and

. In the second case we have , so that we are at a fixed point that is not a
solution.

If Newton's method diverges, sometimes we can rescue it by damping, i.e., decreasing
our step size: that is, we set for some . But tuning the step
size (and other methods beyond damped Newton) are beyond the scope of this set of
notes.

Example

Let , so that . The solution to is , but let's see if we
can find this by Newton's method, starting from somewhere else.

Equation

Quite rapidly we have reached , very close to the true solution.

Unconstrained optimization

Solving optimization problems is strongly related to solving systems of equations. In an
unconstrained optimization problem

f(x) = 0

f (x)′

df = 0 dx = 0

f (x)′

dx = 0 df = 0

f(x) = 0 f(x) + df = 0

x =t+1 x +t α dxt α ∈t (0, 1)

f(x) = e −x 1 df = e dxx f(x) = 0 x = 0

x f df dx

1 e − 1 e e dx = 1 − e
e

1−e

−0.632 −0.468 0.532 0.532 dx = 0.468 0.880

0.248 0.281 1.281 1.281 dx = −0.281 −0.219

x = 0.029

L(θ) L ∈
θ

min R →n R

final: x=0.029

Exercise
on repl.it

• Try out Newton’s method for one of the functions provided

• Then pick a different simple function and implement your own version of
newton_step; see what happens for various initial points

• https://replit.com/team/professorgeoff/Newtons-method

µe
Colla8h f. + df = 0

4Welder df = f
'

(✗ i)d✗IRLS
↳ Newton for logistic

⇒¥=

Unconstrained optimization
LCQ) c-

→ IR
main

LCQ)

L' (0-7 c- IR
"
→ pi

DL =L '(0-1
do

L' (a) = 0

dL
'

/ 0-1 =L
" /0-1

DOL' (G) + dl
'

= O

IL"(0-1 do
any

ex - ✗ ex - I = 0

Constrained optimization
min LLQ) sat . g(0-1=0
① Tpi→ IR Tµz^→R

or -
Rd 9

← I
→

r
m (10-1+4101*810)=0 •→→•0.

•

d(L(0-1+410-1
)

= DLLOI +
✗ d8(°) →

= C' (A) do
+ ✗g' (d)

do

I 0

L' (0-1 1- ✗ 840-1=0] first order got
→ Rd

g(0-1--0 optimality ye ,R1×9

L

min I hit y
'
+ E) st %+y = I

yt
2- = 1

dL =
xdx + ydy + zdz g,

L' = Cx , y ,
7) (✗

"

y
2- Ig,

ix. y ,z)=×+y
-1

dg ,
=
1110) (Yy)

(✗ ,y ,
't) + ✗ (11 °)

dg , = (0114%2)+ p (0111--0)¥¥. !

!

"###
$

0 I 0 I 1

Iii : : :| :*0 0 I 0
I µ

O l l
0
°

I

✗ = 43

y
= 213

z
= 1/3

✗
=

-

' 13

f.
=
-

' 13

