10-606: Mathematical Foundations for Machine Learning Fall 2021

Recitation 2: Deriving 1D Linear Regression with Offset

Note: LaTeX template courtesy of UC Berkeley EECS dept.

In this worksheet, we will consider the linear model, y = mx + b, where y, m,z,b € R. In what follows, you
will go through the steps to derive the values of m and b that minimize MSE for a given arbitrary dataset,
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Step 1. Write out the MSE, J(m,b; D).

Solution.
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Step 2. Compute the partial derivatives g—i(mb;D) and %(m,b;D). You may want to first expand
J(m,b; D) first (like we did in the non-offset case) to make things easier for you.

Solution.
We note that the term in the sum expanded is:
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So the MSE is:
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From this point it is much easier to compute the partial derivatives.
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Step 3. Find my, by such that %(mo,bo; D) =0 and ‘?)—g(mo, bo; D) = 0. In this case, mg, by is the global
minimizer, i.e. y = mox + by is the line that achieves the lowest MSE.

Solution.

Starting with setting the %(m, b; D) = 0 and solving for b:
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Substituting this into %(m7 b; D) and setting to 0 we get:
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