

Recitation 2: Deriving 1D Linear Regression with Offset

Note: *LaTeX template courtesy of UC Berkeley EECS dept.*

In this worksheet, we will consider the linear model, $y = mx + b$, where $y, m, x, b \in \mathbb{R}$. In what follows, you will go through the steps to derive the values of m and b that minimize MSE for a given arbitrary dataset, $D = \{(x_i, y_i)\}_{i=1}^N$.

Step 1. Write out the MSE, $J(m, b; D)$.

Solution.

$$J(m, b; D) = \frac{1}{N} \sum_{i=1}^N (y_i - mx_i - b)^2$$

Step 2. Compute the partial derivatives $\frac{\partial J}{\partial m}(m, b; D)$ and $\frac{\partial J}{\partial b}(m, b; D)$. You may want to first expand $J(m, b; D)$ first (like we did in the non-offset case) to make things easier for you.

Solution.

We note that the term in the sum expanded is:

$$(y_i - mx_i - b)^2 = y_i^2 + m^2 x_i^2 + b^2 - 2y_i x_i m - 2y_i b + 2mx_i b$$

So the MSE is:

$$\begin{aligned} J(m, b; D) &= \frac{1}{N} \sum_{i=1}^N [y_i^2 + m^2 x_i^2 + b^2 - 2y_i x_i m - 2y_i b + 2mx_i b] \\ &= \frac{1}{N} \sum_{i=1}^N y_i + \left(\frac{1}{N} \sum_{i=1}^N x_i^2 \right) m^2 + b^2 - \left(\frac{2}{N} \sum_{i=1}^N y_i x_i \right) m - \left(\frac{2}{N} \sum_{i=1}^N y_i \right) b + \left(\frac{2}{N} \sum_{i=1}^N x_i \right) mb \end{aligned}$$

From this point it is much easier to compute the partial derivatives.

$$\frac{\partial J}{\partial m}(m, b; D) = \left(\frac{2}{N} \sum_{i=1}^N x_i^2 \right) m + \left(\frac{2}{N} \sum_{i=1}^N x_i \right) b - \frac{2}{N} \sum_{i=1}^N y_i x_i$$

$$\frac{\partial J}{\partial b}(m, b; D) = \left(\frac{2}{N} \sum_{i=1}^N x_i \right) m + 2b - \frac{2}{N} \sum_{i=1}^N y_i$$

Step 3. Find m_0, b_0 such that $\frac{\partial J}{\partial m}(m_0, b_0; D) = 0$ and $\frac{\partial J}{\partial b}(m_0, b_0; D) = 0$. In this case, m_0, b_0 is the global minimizer, i.e. $y = m_0x + b_0$ is the line that achieves the lowest MSE.

Solution.

Starting with setting the $\frac{\partial J}{\partial b}(m, b; D) = 0$ and solving for b :

$$\begin{aligned}\frac{\partial J}{\partial b}(m, b; D) &= \left(\frac{2}{N} \sum_{i=1}^N x_i \right) m + 2b - \frac{2}{N} \sum_{i=1}^N y_i = 0 \\ b &= \frac{1}{N} \left(\sum_{i=1}^N y_i - m \sum_{i=1}^N x_i \right)\end{aligned}$$

Substituting this into $\frac{\partial J}{\partial m}(m, b; D)$ and setting to 0 we get:

$$\frac{\partial J}{\partial m}(m, b; D) = \left(\frac{2}{N} \sum_{i=1}^N x_i^2 \right) m + \left(\frac{2}{N} \sum_{i=1}^N x_i \right) \left[\frac{1}{N} \left(\sum_{i=1}^N y_i - m \sum_{i=1}^N x_i \right) \right] - \frac{2}{N} \sum_{i=1}^N y_i x_i = 0$$

$$m \left[\sum_{i=1}^N x_i^2 - \frac{1}{N} \left(\sum_{i=1}^N x_i \right)^2 \right] = \sum_{i=1}^N x_i y_i - \frac{1}{N} \left(\sum_{i=1}^N x_i \right) \left(\sum_{i=1}^N y_i \right)$$

$$m = \frac{\sum_{i=1}^N x_i y_i - \frac{1}{N} \left(\sum_{i=1}^N x_i \right) \left(\sum_{i=1}^N y_i \right)}{\sum_{i=1}^N x_i^2 - \frac{1}{N} \left(\sum_{i=1}^N x_i \right)^2}$$