
Announcements

HW2

- Due Sat 10/2

Quizzes

- Mon 10/4, last 15 min. of class (calculus, optimization, Lagrange)
- Mon 10/11, last 15 min. of class (probability, statistics)

Mathematical Foundations for Machine Learning

Probability

Instructor: Pat Virtue

Plan

Today

Probability

- Probability exercises ✓

- Chain rule
- Independence

- i.i.d.

Statistics

- Finding the best parameters

Probability

Poll 1: Exercise

Implement a function in Python for the pdf of a Gaussian distribution.

Python numpy or math packages are fine, no scipy, etc.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Probability Vocab

Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable

Continuous random variable

Probability mass function

Probability density function

Parameters

Probability Toolbox

→ ■ Algebra

- Three axioms of probability
- Theorem of total probability
- Definition of conditional probability
- Product rule
- Bayes' theorem
- Chain rule
- Independence
- Conditional independence

Tools Summary

Adding to our toolbox

1. Definition of conditional probability
2. Product Rule
3. Bayes' theorem
4. Chain Rule...

$$P(A|B) = \frac{P(A, B)}{P(B)}$$

$$P(A, B) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$\begin{aligned} p(x_1, x_2, x_3) &= p(x_1) p(x_2 | x_1) p(x_3 | x_1, x_2) \\ &= p(x_3) p(x_2 | x_3) p(x_1 | x_3, x_2) \end{aligned}$$

$$p(x_1, \dots, x_N) = \prod_{i=1}^N p(x_i | x_1, \dots, x_{i-1})$$

Independence

A $\perp\!\!\!\perp$ B

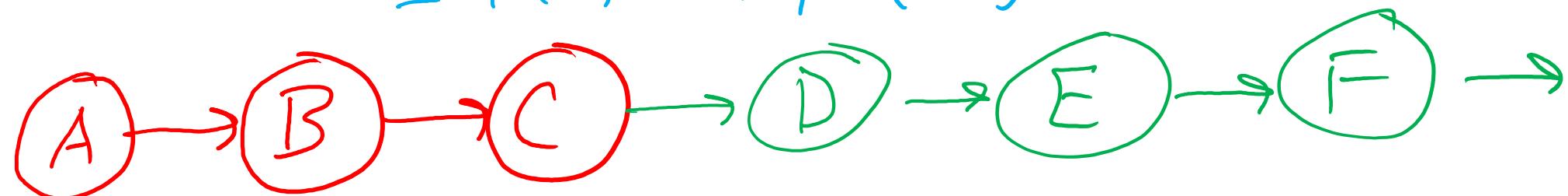
$$P(A, B) = P(A)P(B)$$

$$P(A | B) = P(A)$$

$$P(B | A) = P(B)$$

Conditional Independence

$$(A \perp\!\!\!\perp B) | C$$


$$P(A, B | C) = P(A | C) P(B | C)$$

$$P(A | B, C) = P(A | C)$$

$$P(B | A, C) = P(B | C)$$

General

$$\begin{aligned} P(A, B, C) &= P(A) P(B | A) \underbrace{P(C | A, B)}_{P(C | B)} \\ &= P(A) P(B | A) P(C | B) \end{aligned}$$

$$A \perp\!\!\!\perp C | B$$

$$P(A) P(B | A) P(C | B) P(D | C) P(E | D) P(F | E)$$

Conditional Independence

$$A \perp\!\!\!\perp B \mid C$$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$P(A \mid B, C) = P(A \mid C)$$

$$P(B \mid A, C) = P(B \mid C)$$

Probability Notation

[Notation doc](#)

Likelihood

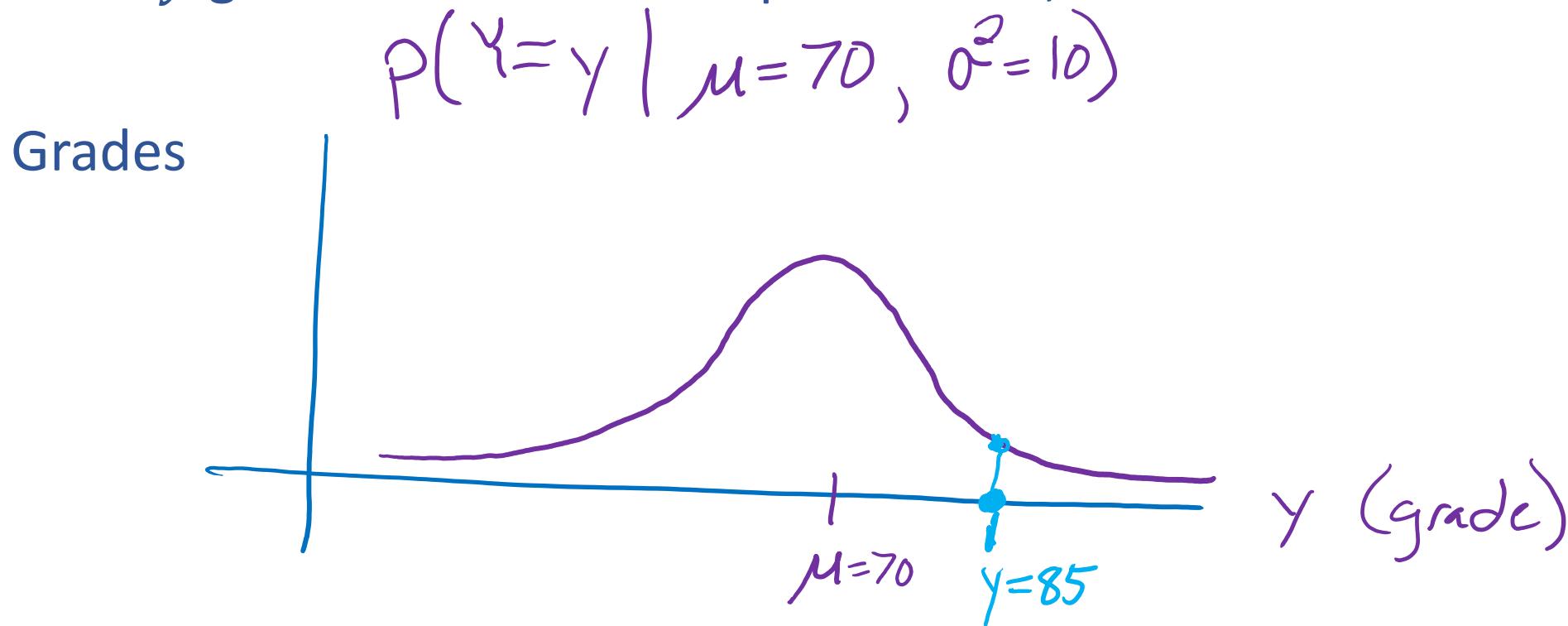
Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

$$P(Y = y | \underline{\theta})$$

Additional
notation

$$P(y | \theta)$$

$$P(y_j | \theta)$$


$$P_\theta(y)$$

$$P(D | \theta)$$

Likelihood

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

$$\text{Gaussian PDF: } p(y | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Likelihood

Trick coin: comes up heads only 1/3 of the time

$Y=1$ head

1 flip: H

probability: $\frac{1}{3}$

2 flips: H,H

probability: $\frac{1}{3} \cdot \frac{1}{3}$

3 flips: H,H,T

probability: $\frac{1}{3} \cdot \frac{1}{3} \cdot \left(1 - \frac{1}{3}\right)$

But why can we just multiply these?

$$P(Y^{(1)}=1)P(Y^{(2)}=1)P(Y^{(3)}=0)$$

$$= P(Y^{(1)}=1, Y^{(2)}=1, Y^{(3)}=0)$$

Likelihood and i.i.d

$$D = \{y^{(1)}, y^{(2)}, y^{(3)}\}$$

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

i.i.d.: Independent and identically distributed

$$P(Y^{(1)} = y^{(1)}, Y^{(2)} = y^{(2)}, Y^{(3)} = y^{(3)} | \theta^{(1)}, \theta^{(2)}, \theta^{(3)})$$

identical

$$P(Y = y^{(1)}, Y = y^{(2)}, Y = y^{(3)} | \theta)$$

independent

$$= P(Y = y^{(1)} | \theta) P(Y = y^{(2)} | \theta) P(Y = y^{(3)} | \theta)$$

Bernoulli Likelihood

$$p(\mathcal{D} | \theta)$$

Bernoulli distribution:

$$Y \sim \text{Bern}(\phi) \quad p(y | \phi) = \begin{cases} \phi, & y = 1 \\ 1 - \phi, & y = 0 \end{cases}$$

What is the likelihood for three i.i.d. samples, given parameter ϕ :

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$\begin{aligned} p(\mathcal{D} | \phi) &= \prod_{i=1}^N P(Y = y^{(i)} | \phi) \\ &= \phi \cdot \phi \cdot (1 - \phi) \end{aligned}$$

Challenge

Assume that exam scores are drawn independently from the same Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is a better fit (a higher likelihood)?

- A) Mean 80, standard deviation 3
- B) Mean 85, standard deviation 7

Use a calculator/computer.

$$\text{Gaussian PDF: } p(y | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$