As You Walk In

Please complete survey

- See Piazza for link

Announcements

HW1

- Due Today, 11:59 pm
- Online + Written components

Probability

- Reach out for help on HW1 probability before Wednesday!

Quiz

- First quiz on Wed 9/22
- Details posted on Piazza

Mathematical
 Foundations for Machine Learning

Calculus \&

Lagrange Multipliers

Instructor: Pat Virtue

Linear Regression

Last time

Calculus needed to:

- Find \mathbf{w} that minimizes MSE with model $y=\mathbf{w}^{T} \mathbf{x}$,

Today

Quick trick to:
\Longrightarrow Find \mathbf{w}, b that minimizes MSE with model $y=\mathbf{w}^{T} \mathbf{x}+b, \quad \mathbf{x} \in \mathbb{R}^{M}$ Calculus needed for neural networks

- Partial derivatives of various sizes
- Multivariate chain rule

Constrained optimization and Lagrange multipliers

Linear Regression

Quick trick to:

- Find \mathbf{w}, b that minimizes MSE with model $y=\mathbf{w}^{T} \mathbf{x}+b, \quad \mathbf{x} \in \mathbb{R}^{M}$

Jump to Lecture 5 slides

Calculus
Partial derivatives

Calculus with Linear Algebra

$$
f(x, u, z, v)
$$

Vector in, scalar out
Gradient

$$
\begin{aligned}
& y=f(\mathbf{x}) \quad y \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{M} \\
& \sigma=f(\text { 目 }) \\
& \frac{\partial f}{\partial x_{1}}=0 \\
& \frac{\partial f}{\partial x_{2}}=0 \\
& \frac{\partial f}{\partial x_{m}}=0
\end{aligned}
$$

Calculus with Linear Algebra

Functions with linear algebra $\underset{\rightarrow}{\text { input }} \lim H$
out $y=\mathrm{f}(x)$

$$
y=\mathrm{f}\left(\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{M}
\end{array}\right]\right)
$$

$$
y=\mathrm{f}\left(\left[\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, L} \\
\vdots & \ddots & \vdots \\
X_{M, 1} & \cdots & X_{M, L}
\end{array}\right]\right)
$$

$$
\begin{aligned}
& \text { din } \\
& \text { xt }
\end{aligned}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\mathrm{f}(x)
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\mathrm{f}\left(\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{M}
\end{array}\right]\right)
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\mathrm{f}\left(\left[\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, L} \\
\vdots & \ddots & \vdots \\
X_{M, 1} & \cdots & X_{M, L}
\end{array}\right]\right)
$$

$$
\int\left[\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, K} \\
\vdots & \ddots & \vdots \\
Y_{N, K} & \cdots & Y_{N, K}
\end{array}\right]=\mathrm{f}(x) \quad\left[\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, K} \\
\vdots & \ddots & \vdots \\
Y_{N, K} & \cdots & Y_{N, K}
\end{array}\right]=\mathrm{f}\left(\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{M}
\end{array}\right]\right) \quad\left[\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, K} \\
\vdots & \ddots & \vdots \\
Y_{N, K} & \cdots & Y_{N, K}
\end{array}\right]=\mathrm{f}\left(\left[\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, L} \\
\vdots & \ddots & \vdots \\
X_{M, 1} & \cdots & X_{M, L}
\end{array}\right]\right)
$$

Calculus with Linear Algebra
One way to think of it: Bag of Derivatives

$$
\left.\begin{array}{l}
{\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]=\mathrm{f}\left(\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{M}
\end{array}\right)\right.} \\
\varsigma
\end{array}\right)
$$

Calculus with Linear Algebra
One way to think of it: Bag of Derivatives

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Y_{1,1} \text { way to think of it: Bag of Derivatives } \\
\vdots & \cdots & Y_{1, K} \\
Y_{N, L,}, & \cdots & Y_{N, K}
\end{array}\right]=\mathrm{f}\left(\left[\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, L} \\
\vdots & \ddots & \vdots \\
X_{M, 1} & \cdots & X_{M, L}
\end{array}\right]\right)} \\
& \frac{\partial Y_{11}}{\partial X_{11}}
\end{aligned}
$$

Calculus with Linear Algebra
Jacobian: Vector in, vector out
\rightarrow Numerator-layout

$$
[]=f([])
$$

$$
\left.\begin{array}{lll}
y=f(x) & y \in \mathbb{R}^{N}, & x \in \mathbb{R}^{M}, \\
\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \\
\frac{\partial \vec{y}}{\partial x} & =\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots
\end{array}\right. & \frac{\partial y_{1}}{\partial x_{M}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \ddots & \\
\vdots & & \\
\frac{\partial y_{N}}{\partial x_{1}} & & \frac{\partial y_{N}}{\partial x_{M}}
\end{array}\right] \quad . \quad .
$$

Calculus with Linear Algebra

 Numerator-layout vs denominator-layout $>$ [] Vector in, vector out$\left.\begin{array}{|c|c|}\hline \text { Numerator layout } & \text { Denominator layout } \\ \hline \text { Number of outputs } \times \text { number of inputs } & \text { Number of inputs } \times \text { number of outputs } \\ \hline \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} \in \mathbb{R}^{N \times M} & \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} \in \mathbb{R}^{M \times N} \\ {\left[\begin{array}{l}{[}\end{array}\right]} & {[}\end{array}\right]$

Calculus with Linear Algebra

Vector in, scalar out
Numerator-layout

$$
y=f(\boldsymbol{x}) \quad y \in \mathbb{R}, \quad x \in \mathbb{R}^{M}, \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}
$$

$$
\frac{\partial y}{\partial \dot{x}}=\left[\frac{\partial y}{\partial x_{1}}, \cdots \frac{\partial y}{\partial x_{M}}\right]
$$

Calculus with Linear Algebra

Numerator-layout vs denominator-layout

Vector in, scalar out

$$
y=f(\boldsymbol{x}) \quad y \in \mathbb{R}, \quad x \in \mathbb{R}^{M}
$$

Numerator layout
Denominator layout
Number of outputs \times number of inputs Number of inputs \times number of outputs

$$
\begin{array}{cc}
\frac{\partial y}{\partial \boldsymbol{x}} \in \mathbb{R}^{1 \times M} & \frac{\partial y}{\partial \boldsymbol{x}} \in \mathbb{R}^{M \times 1} \\
{[} & {\left[\begin{array}{l}
\\
\end{array}\right]}
\end{array}
$$

Calculus with Linear Algebra
Scalar in, vector out
\rightarrow Numerator-layout

$$
J=f(x)
$$

$$
\boldsymbol{y}=f(x) \quad y \in \mathbb{R}^{N}, \quad x \in \mathbb{R}, \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times 1}
$$

$$
\frac{\partial \vec{y}}{\partial x}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x} \\
\vdots \\
\frac{\partial y_{N}}{\partial x}
\end{array}\right]
$$

Calculus with Linear Algebra

Gradient: Vector in, scalar out
Transpose of numerator-layout
$y=f(\boldsymbol{x}) \quad y \in \mathbb{R}, \quad x \in \mathbb{R}^{M}, \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}, \quad \nabla_{x} f \in \mathbb{R}^{M \times 1}$ $\nabla_{\vec{x}} f=\left(\frac{\partial f}{\partial \vec{x}}\right)^{\top}$

$$
[]=([
$$

$$
J)^{\top}
$$

Calculus with Linear Algebra

Matrix in, scalar out
Keep same dimensions as matrix

$$
y=f(\underset{L}{\boldsymbol{X}}) \quad y \in \mathbb{R}, \quad X \in \mathbb{R}^{N \times M}, \quad \frac{\partial y}{\partial X} \in \mathbb{R}^{N \times M}
$$

$$
\frac{\partial y}{\partial X}=\left[\begin{array}{ccc}
\frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{1, M}} \\
\vdots & & \vdots \\
\frac{\partial y}{\partial X_{N, 1}} & & \frac{\partial y}{\partial X_{N, M}}
\end{array}\right]
$$

Exercise 1
Suppose we have a function that takes in a vector and squares each element individually, returning another vector, $\boldsymbol{y}=f(\boldsymbol{x})$.

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \rightarrow\left[\begin{array}{l}
x_{1}^{2} \\
x_{2}^{2} \\
x_{3}^{2}
\end{array}\right] \vartheta \quad \text { Example: } f\left(\left[\begin{array}{l}
7 \\
3 \\
5
\end{array}\right]\right) \rightarrow\left[\begin{array}{c}
49 \\
9 \\
25
\end{array}\right]
$$

What is $\partial \boldsymbol{y} / \partial \boldsymbol{x}$? (use numerator layout)

$$
\frac{\partial y}{\partial x}=\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}} \\
\frac{\partial y_{3}}{\partial x_{1}} & \frac{\partial y_{3}}{\partial x_{2}} & \frac{\partial y_{3}}{\partial x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
2 x_{1} & 0 & 0 \\
0 & 2 x_{2} & 0 \\
0 & 0 & 2 x_{3}
\end{array}\right]
$$

Calculus
Chain rule

Reminder: Calculus Chain Rule (scalar version)

$$
x \rightarrow g \xrightarrow[\rightarrow f \rightarrow y]{ } \quad \begin{aligned}
& y=f(z) \\
& z=g(x) \\
& \frac{d y}{d x} \\
& =\frac{d y}{d z} \frac{d z}{d x} \\
& \frac{d f}{d x}=\frac{d f}{d g} \frac{d g}{d x}
\end{aligned} \quad y=f(g(x))
$$

Network Optimization: Layer Implementation

$$
\begin{aligned}
& J(\mathbf{w})=z_{3} \\
& z_{3}=f_{3}\left(w_{3}, z_{2}\right) \\
& z_{2}=f_{2}\left(w_{2}, z_{1}\right) \\
& z_{1}=f_{1}\left(w_{1}, x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial J}{\partial w_{3}}=\frac{\partial J}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{3}} \\
& {\left[\frac{\partial J}{\partial w_{2}}\right]=\frac{\partial J}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial w_{2}}} \\
& \frac{\partial J}{\partial w_{1}}=\frac{\partial J}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}}
\end{aligned}
$$

$$
\frac{\partial J}{\partial x}=\frac{\partial J}{d y} \frac{\partial y^{h}}{\partial x}
$$

$$
\frac{\partial J}{d w}=\frac{\partial J}{d y} \frac{\partial y}{\partial y}
$$

Lots of repeated calculations

Backpropagation (continue)

$\square \frac{\partial E}{\partial X_{n}}=\frac{\partial C\left(X_{n}, Y\right)}{\partial X_{n}}$
$\square \frac{\partial E}{\partial X_{n-1}}=\frac{\partial E}{\partial X_{n}} \frac{\partial F_{n}\left(X_{n-1}, W_{n}\right)}{\partial X_{n-1}} \quad$ Say: $F_{n}=\sigma$
$\square \frac{\partial E}{\partial W_{n}}=\frac{\partial E}{\partial X_{n}} \frac{\partial F_{n}\left(X_{n-1}, W_{n}\right)}{\partial W_{n}} \quad \frac{\partial \sigma}{\partial W_{n}} \sigma(1-\sigma) x_{n-1}$
$\square \frac{\partial E}{\partial X_{n-2}}=\frac{\partial E}{\partial X_{n-1}} \frac{\partial F_{n-1}\left(X_{n-2}, W_{n-1}\right)}{\partial X_{n-2}}$
$\square \frac{\partial E}{\partial W_{n-1}}=\frac{\partial E}{\partial X_{n-1}} \frac{\partial F_{n-1}\left(X_{n-2}, W_{n-1}\right)}{\partial W_{n-1}}$
.etc, until we reach the first module.
we now have all the $\frac{\partial E}{\partial W_{i}}$ for $i \in[1, n]$.

What is a Derivative?

$$
\begin{aligned}
& f(x)=11 x+9 \\
& y=f(x) \\
& x+\epsilon \xrightarrow{x \rightarrow f} y_{f(x+\epsilon)} \quad \frac{\partial f}{d x} \\
& \begin{aligned}
& x=7 \\
& 7.1 \longrightarrow H x+9
\end{aligned}>86 \\
& \frac{\Delta y}{\Delta x}=\frac{1.1}{0.1}=11
\end{aligned}
$$

What is a Derivative?

$$
\begin{aligned}
& g(x)=3 x \\
& f(z)=2 z \\
& y=f(g(x))
\end{aligned}
$$

$$
\begin{aligned}
& \frac{.6}{.1}=6 \\
& \frac{\partial y}{\partial x}=\frac{\partial f}{\partial z} \frac{\partial g}{\partial x}
\end{aligned}
$$

What is a Derivative?
$g_{1}(x)=3 x$

$$
\frac{\partial y}{\partial x}=\frac{\partial f}{\partial g_{1}} \frac{\partial g_{1}}{\partial x}+\frac{\partial f}{\partial g_{2}} \frac{\partial g_{2}}{\partial x}
$$

$g_{2}(x)=5 x$

Multivariate Chain Rule

$$
\left[\begin{array}{c}
z_{1}=g_{1}(x) \\
\vdots \\
z_{M}=g_{M}(x) \\
y=f\left(z_{1}, \cdots, z_{M}\right)
\end{array}\right.
$$

$$
\frac{\partial y}{\partial x}=\sum_{j=1}^{M} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}
$$

Calculus Chain Rule

Scalar:

$$
\begin{aligned}
& z=g(x) \\
& y=f(z) \\
& \frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{z}=g(x) \\
& y=f(\mathbf{z}) \\
& \frac{d y}{d x}=\sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}
\end{aligned}
$$

Exercise 2

$$
\mathbf{z}=g(x)
$$

$$
\begin{aligned}
z_{1} & =g_{1}(x)=\sin (x) \\
z_{2} & =g_{2}(x)=x^{3} \\
y & =f\left(z_{1}, z_{2}\right)=z_{1}^{4} e^{z_{2}}+5 z_{1}+7 z_{2} \\
\frac{\partial y}{\partial x} & =\frac{\partial y}{\frac{\partial z_{1}}{\partial x} \frac{\partial z_{1}}{\partial x}+\frac{d y}{\partial z_{2}} \frac{\partial z_{2}}{d x}} \frac{y=f(z)}{\frac{d y}{d x}=\sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}} \\
& \left.=4 z_{1}^{3} e^{z_{2}}+5\right) \cdot \cos (x)+\left(z_{1}^{4} e^{z_{2}}+7\right) 3 x^{2}
\end{aligned}
$$

Exercise 3

$$
\begin{aligned}
& z_{1}=g_{1}(x)=\sin (x) \\
& z_{2}=g_{2}(x)=x^{3} \\
& y=f\left(z_{1}, z_{2}\right)=z_{1} z_{2}
\end{aligned}
$$

Multivariate chain rule

$$
\begin{aligned}
& z=g(x) \\
& y=f(z) \\
& \frac{d y}{d x}=\sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}
\end{aligned}
$$

$$
\frac{\partial y}{\partial x}=
$$

Calculus Chain Rule

Scalar:

$$
\begin{aligned}
& z=g(x) \\
& y=f(z) \\
& \frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x}
\end{aligned}
$$

Multivariate:

$$
\begin{array}{ll}
\mathbf{z}=g(x) & \mathbf{z}=g(\mathbf{x}) \\
y=f(\mathbf{z}) & \mathbf{y}=f(\mathbf{z}) \\
\frac{d y}{d x}=\sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x} & \frac{d y_{\mathrm{i}}}{d x_{\mathrm{k}}}=\sum_{j} \frac{\partial y_{i}}{\partial z_{j}} \frac{\partial z_{j}}{\partial x_{\mathrm{k}}}
\end{array}
$$

Linear Regression

Last time

Calculus needed to:

- Find \mathbf{w} that minimizes MSE with model $y=\mathbf{w}^{T} \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{2}$

Today

Quick trick to:

- Find \mathbf{w}, b that minimizes MSE with model $y=\mathbf{w}^{T} \mathbf{x}+b, \quad \mathbf{x} \in \mathbb{R}^{M}$ Calculus needed for neural networks
- Partial derivatives of various sizes
- Multivariate chain rule
\rightarrow Constrained optimization and Lagrange multipliers

Constrained Optimization
Method of Lagrange multipliers

Exercise

Mini-max game

$$
L(x, \lambda)=2 x+9-\lambda\left(x^{2}-2\right)
$$

Two teams
Team λ :

- Goes first
- Chooses a value for λ in attempt to maximize $L(x, \lambda)$

Team x :

- Goes second
- Chooses a value for x in attempt to minimize $L(x, \lambda)$

