

Announcements

HW1

- Due Mon 9/20, 11:59 pm
- Online + Written components
- Reach out for help (probability, LaTeX, anything!)

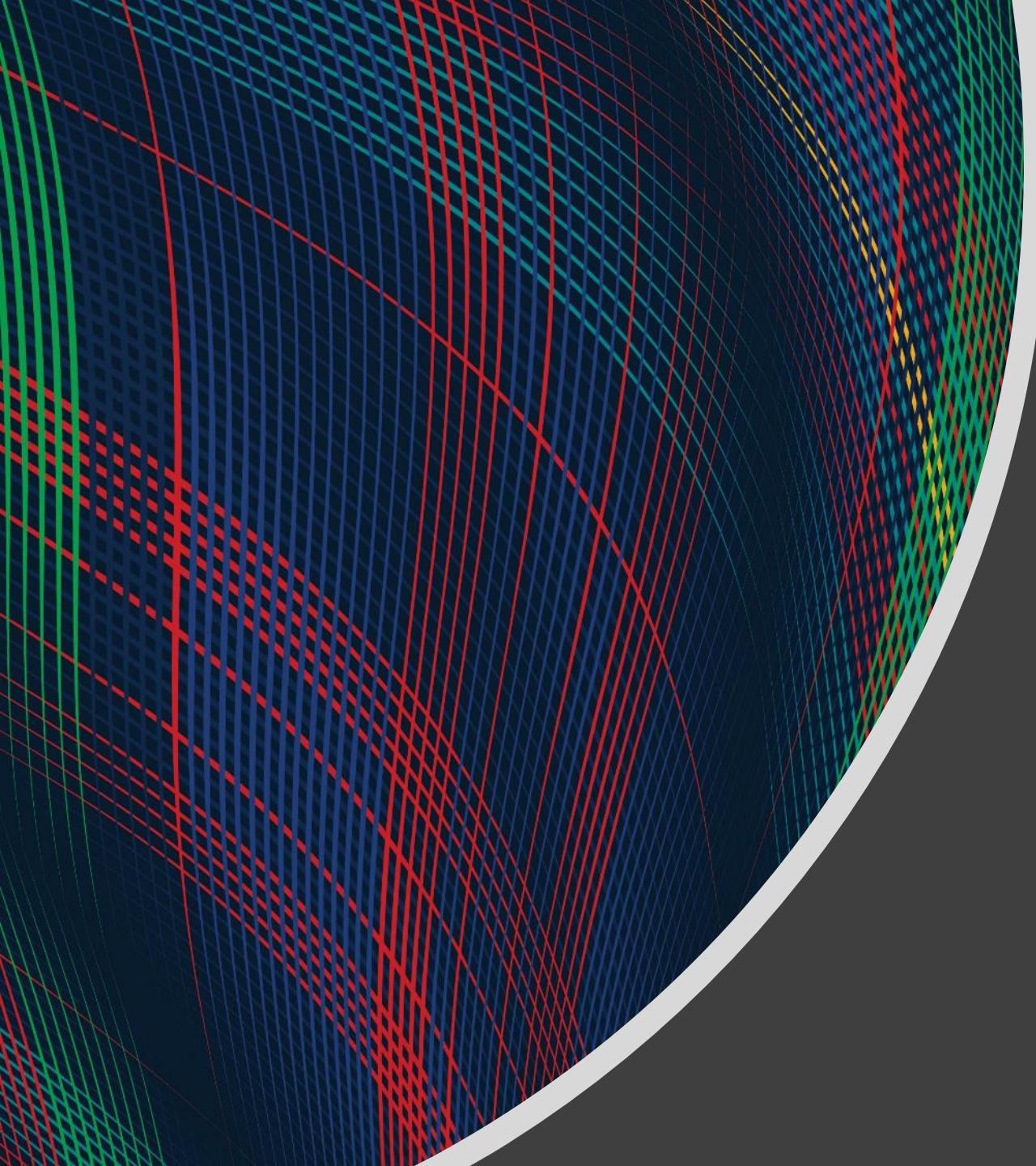
Drop deadline

- Fri 9/17

Quizzes

Vocab and Notation doc

- Notes section added!



Mathematical Foundations for Machine Learning

Linear Regression

Instructor: Pat Virtue

Today

Linear regression

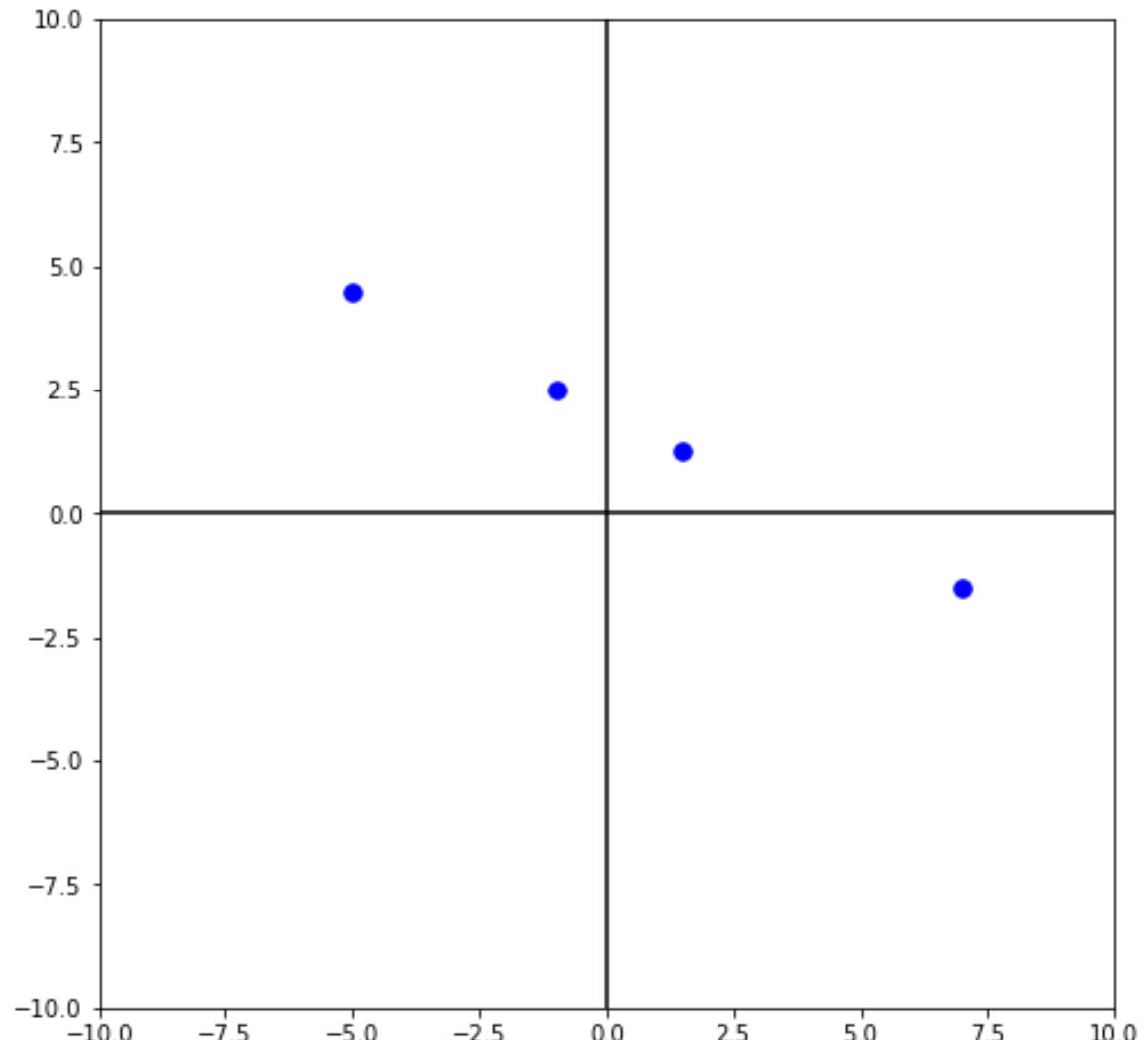
- Linear algebra formulation
 - Linear algebra properties
- Calculus
 - Multivariate calculus
 - Calculus with linear algebra
- Optimization
 - Convex functions (briefly)
 - Closed-form solutions

Linear Regression

As a reason to learn linear algebra, calculus, and optimization

Last time: Fitting a linear model

$$\begin{aligned}\mathcal{D} &= \{(x^{(i)}, y^{(i)})\}_{i=1}^4 \\ &= \{(-1, 2.5), \\ &\quad (7, -1.5), \\ &\quad (-5, 4.5), \\ &\quad (1.5, 1.25)\}\end{aligned}$$



Last time

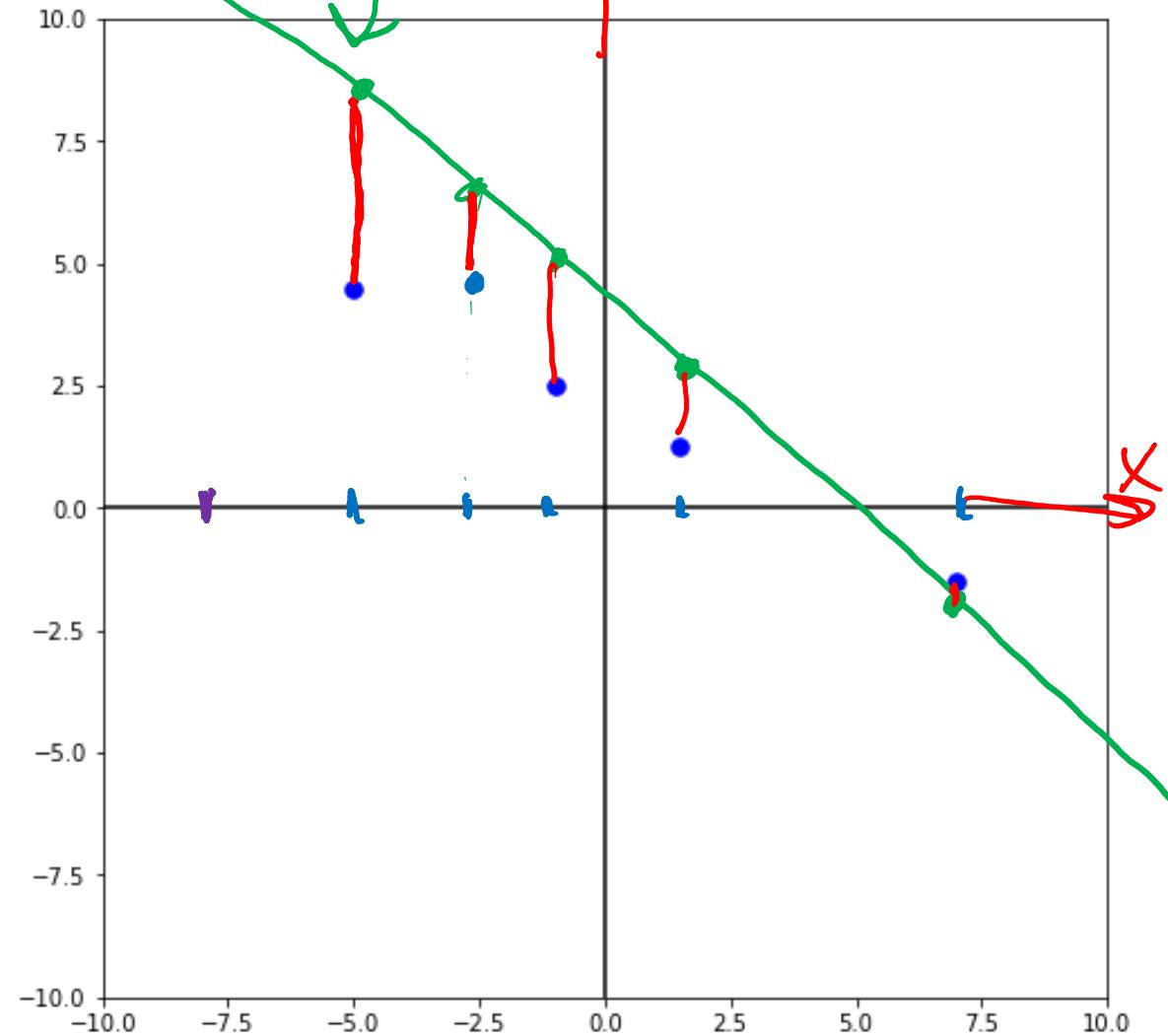
$$\begin{aligned}\mathcal{D} &= \{(x^{(i)}, y^{(i)})\}_{i=1}^4 \\ &= \{(-1, 2.5), \\ &\quad (7, -1.5), \\ &\quad (-5, 4.5), \\ &\quad (1.5, 1.25)\}\end{aligned}$$

$$\sum_{i=1}^N \left(y^{(i)} - \hat{y}^{(i)} \right)^2$$

error

$$\hat{y} = mx + b$$

$$x_{\text{new}} = -8$$



Linear Regression

Last recitation

- 1) Found m that minimized MSE with model $y = mx$, $x \in \mathbb{R}$
- 2) Found m, b that minimized MSE with model $y = mx + b$, $x \in \mathbb{R}$

Tons of summations!

Today

Linear algebra formulation

- 1) Find m that minimizes MSE with model $y = mx$, $x \in \mathbb{R}$
- 2) Find \mathbf{w} that minimizes MSE with model $y = \mathbf{w}^T \mathbf{x}$, $\mathbf{x} \in \mathbb{R}^2$
- 3) Find \mathbf{w}, b that minimizes MSE with model $y = \mathbf{w}^T \mathbf{x} + b$, $\mathbf{x} \in \mathbb{R}^M$

Poll 1

True or False

For any matrices $A, B \in \mathbb{R}^{M \times N}$, the following always holds:

✓ $(A + B)^T = A^T + B^T$

Poll 2

True or False

For any matrices $A, B \in \mathbb{R}^{M \times N}$, $C \in \mathbb{R}^{K \times M}$, the following always holds:

\times $CA + CB = (A + B)C$

$[K \times M] [M \times N]$

$AC + BC$

$M \times N \quad K \times M$

$\checkmark \quad CA + CB = C(A + B)$

$AC + BC = (A + B)C \quad] \Rightarrow$

Poll 3

Select ALL that apply

Which of the following are equal to $\|z\|_2^2$ for any vector $z \in \mathbb{R}^N$?

A. $z^T z$ ←

B. zz^T

C. $\begin{bmatrix} z_1^2 \\ \vdots \\ z_N^2 \end{bmatrix}$

D. None of the above

E. I have no idea

$$\|z\|_2^2 = \sum_{i=1}^N z_i^2$$

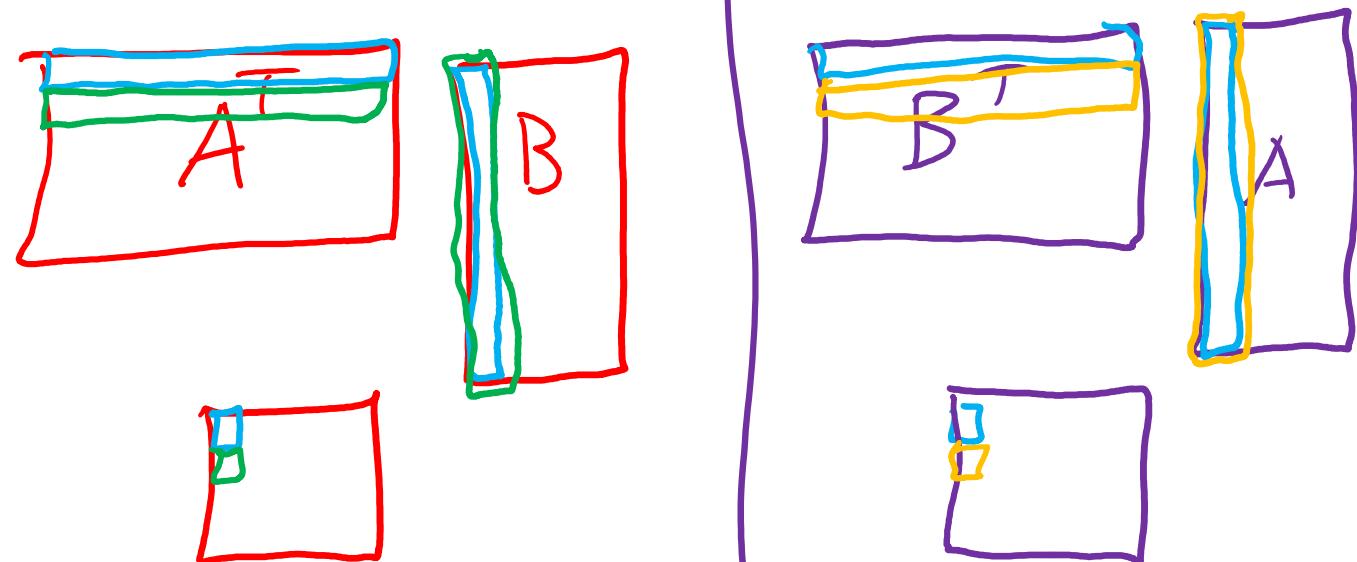
Poll 4

Select ALL that apply

Which of the following hold for any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$ and $A, B \in \mathbb{R}^{M \times N}$?

- A. $\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$
- B. $A^T B \neq B^T A$ 9%
- C. None of the above
- D. I have no idea

$$A^T B \quad \xrightarrow{\quad \left[\begin{smallmatrix} N \times M \\ N \times N \end{smallmatrix} \right] \quad \left[\begin{smallmatrix} M \times N \\ N \times N \end{smallmatrix} \right] \quad}$$
$$B^T \quad \left[\begin{smallmatrix} N \times N \\ N \times N \end{smallmatrix} \right] \left[\begin{smallmatrix} M \times N \\ N \times N \end{smallmatrix} \right]$$



Linear Algebra

Properties

The following hold for any $A, B \in \mathbb{R}^{M \times N}$

- $(AB)^T = B^T A^T$
- $(A^T B)^T = B^T A$
- $(AB^T)^T = B A^T$

The following hold for any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$

- $\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$

(Why is this ok if we can't say $A^T B = B^T A$)

$$(A + B)^T = (A^T + B^T)$$

$$(AB)^T \neq A^T B^T$$

$$(ABC)^T = C^T B^T A^T$$

Linear Regression

Linear algebra formation

Find m that minimizes MSE with model $\hat{y} = mx$, $x \in \mathbb{R}$

$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^4$$

$x^{(i)}$	$y^{(i)}$
2	0
0	-1
-3	0
1	2

Linear Regression

$$\hat{y} = m \hat{x}$$

Linear algebra formation

Find m that minimizes MSE with model $\hat{y} = mx$, $x \in \mathbb{R}$

$$\begin{aligned} J(m; \mathbf{x}, \mathbf{y}) &= \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2 \\ &= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m \mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}] \end{aligned}$$

$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^4$$

$$\hat{x}^{(i)}$$

$x^{(i)}$	$y^{(i)}$
2	0
0	-1
-3	0
1	2

Derive the following expansion $J(m; \mathcal{D})$

Figure out each step, given the provided justification

1 input feature
No bias term
 $\hat{y} = mx \quad m, x \in \mathbb{R}$
All data
 $\mathbf{y}, \mathbf{x} \in \mathbb{R}^N$

$$\begin{aligned} J(m; \mathbf{x}, \mathbf{y}) &= \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2 \\ &= \frac{1}{N} (\mathbf{y} - m\mathbf{x})^T (\mathbf{y} - m\mathbf{x}) \\ &= \frac{1}{N} (\mathbf{y}^T - m\mathbf{x}^T) (\mathbf{y} - m\mathbf{x}) \\ &= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - m\mathbf{y}^T \mathbf{x} - m\mathbf{x}^T \mathbf{y} + m^2 \mathbf{x}^T \mathbf{x}] \\ &= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m\mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}] \end{aligned}$$

Justification

$$\|\mathbf{z}\|_2^2 = \mathbf{z}^T \mathbf{z}$$

$$(A + B)^T = A^T + B^T$$

$$(A + B)C = AC + BC \text{ and} \\ C(A + B) = CA + CB$$

$$\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$$

Linear Regression

Linear algebra formation

Find m that minimizes MSE with model $\hat{y} = mx$, $x \in \mathbb{R}$

$$J(m; \mathbf{x}, \mathbf{y}) = \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2$$

$$J(m) = \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m \mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}]$$

What shape is $J(m)$?

$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^4$$

$x^{(i)}$	$y^{(i)}$
2	0
0	-1
-3	0
1	2

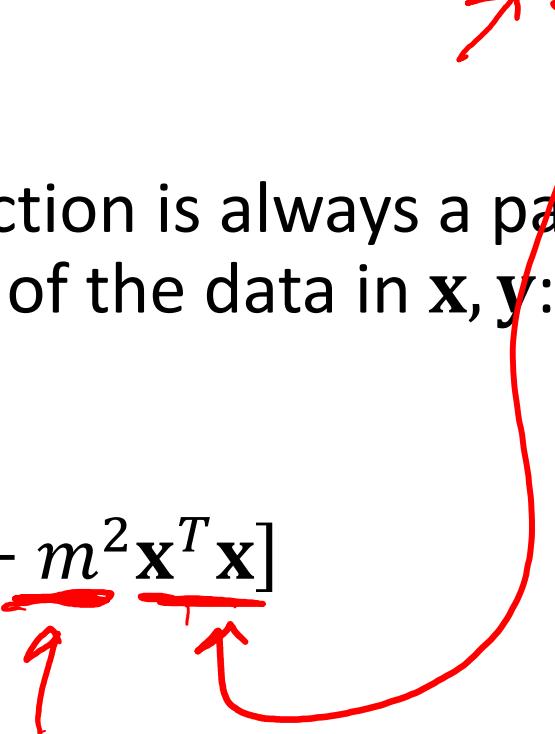
Poll 5

True or False

The following MSE objective function is always a parabola going up (a U shape, rather than \cap) regardless of the data in \mathbf{x}, \mathbf{y} :

$$\begin{aligned} J(m; \mathbf{x}, \mathbf{y}) &= \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2 \\ &= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m\mathbf{y}^T \mathbf{x} + \underline{\underline{m^2 \mathbf{x}^T \mathbf{x}}}] \end{aligned}$$

$$am^2 + bm + c$$



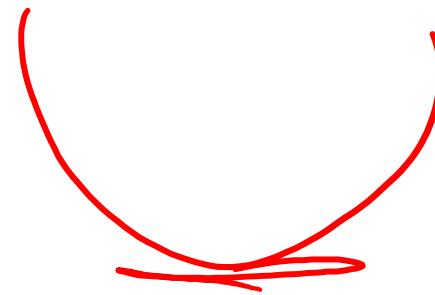
Linear Regression

$$J(m; \mathbf{x}, \mathbf{y}) = \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m \mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}]$$

$$\frac{\partial J}{\partial m} = \frac{1}{N} [0 - 2\mathbf{y}^T \mathbf{x} + 2m \mathbf{x}^T \mathbf{x}]$$

$$0 = -\mathbf{y}^T \mathbf{x} + m \mathbf{x}^T \mathbf{x}$$

$$\hat{m} = \frac{\mathbf{y}^T \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \leftarrow 0$$



Linear and Convex Functions

Optimization

Linear function

If $f(\mathbf{x})$ is linear, then:

- $f(\mathbf{x} + \mathbf{z}) = f(\mathbf{x}) + f(\mathbf{z})$
- $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) \quad \forall \alpha$
- $f(\alpha \mathbf{x} + (1 - \alpha) \mathbf{z}) = \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{z}) \quad \forall \alpha$

Optimization

Convex function

If $f(\mathbf{x})$ is convex, then:

- $f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{z}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{z}) \quad \forall 0 \leq \alpha \leq 1$

Convex optimization

If $f(\mathbf{x})$ is convex, then:

- Every local minimum is also a global minimum ☺