

Announcements

HW1

- Due Mon 9/20, 11:59 pm
- Online + Written components
- Reach out for help (probability, LaTeX, anything!)

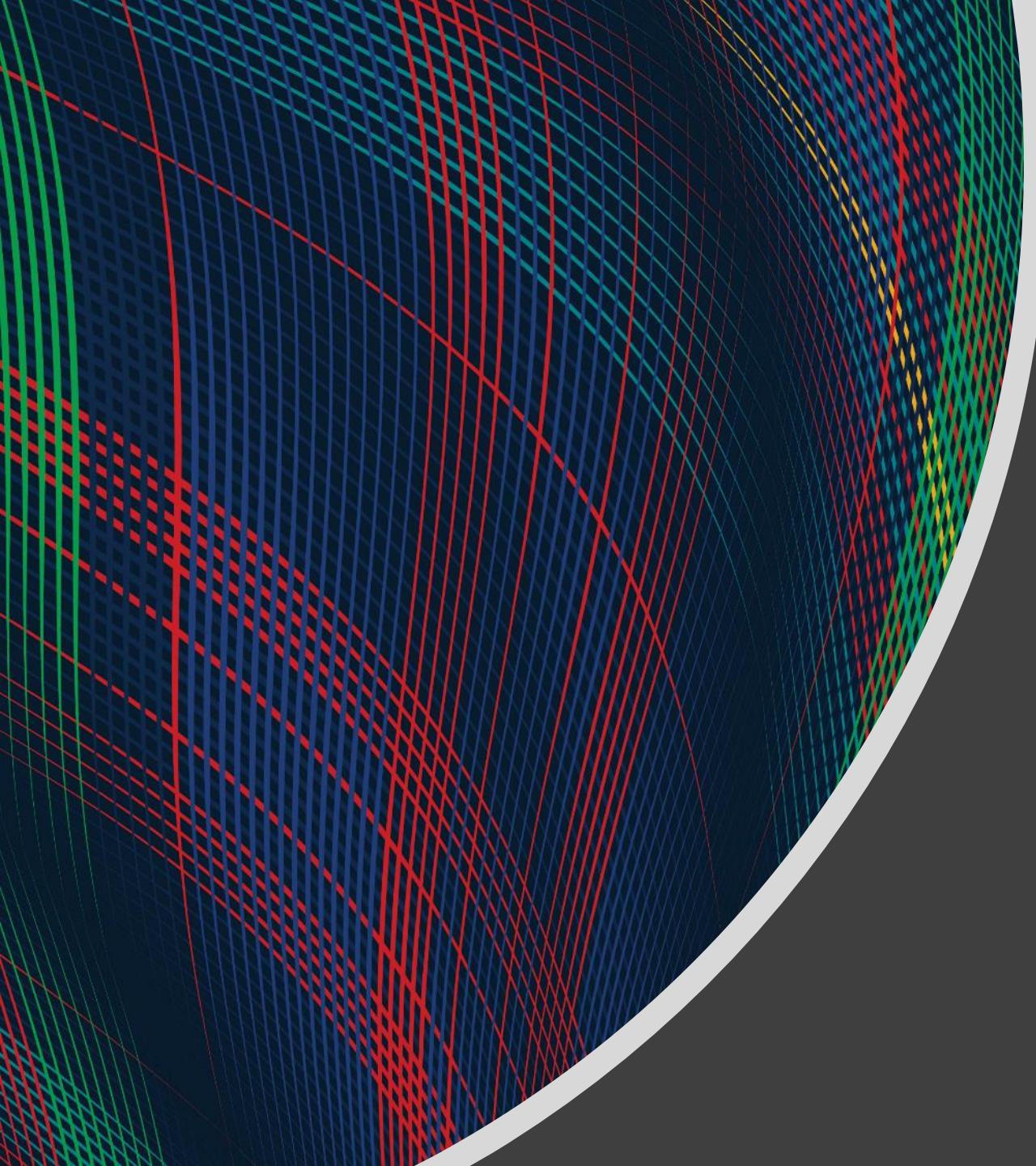
Drop deadline

- Fri 9/17

Quizzes

Vocab and Notation doc

- Notes section added!

A complex geometric pattern on the left side of the slide, consisting of a grid of red and blue lines that create a three-dimensional perspective effect, resembling a cube or a series of nested planes.

Mathematical Foundations for Machine Learning

Linear Regression

Instructor: Pat Virtue

Today

Linear regression

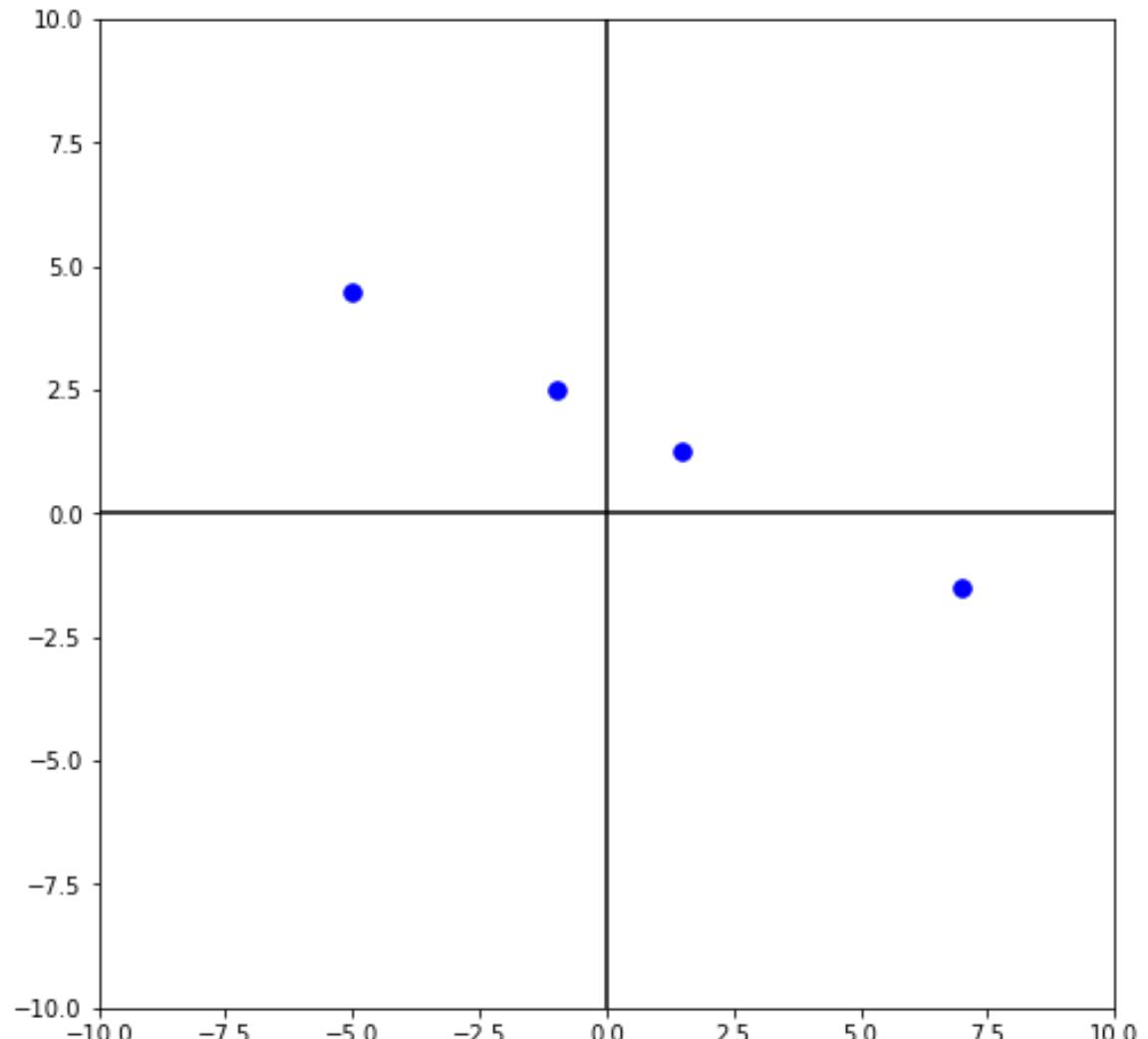
- Linear algebra formulation
 - Linear algebra properties
- Calculus
 - Multivariate calculus
 - Calculus with linear algebra
- Optimization
 - Convex functions (briefly)
 - Closed-form solutions

Linear Regression

As a reason to learn linear algebra, calculus, and optimization

Last time: Fitting a linear model

$$\begin{aligned}\mathcal{D} &= \{(x^{(i)}, y^{(i)})\}_{i=1}^4 \\ &= \{(-1, 2.5), \\ &\quad (7, -1.5), \\ &\quad (-5, 4.5), \\ &\quad (1.5, 1.25)\}\end{aligned}$$



Last time

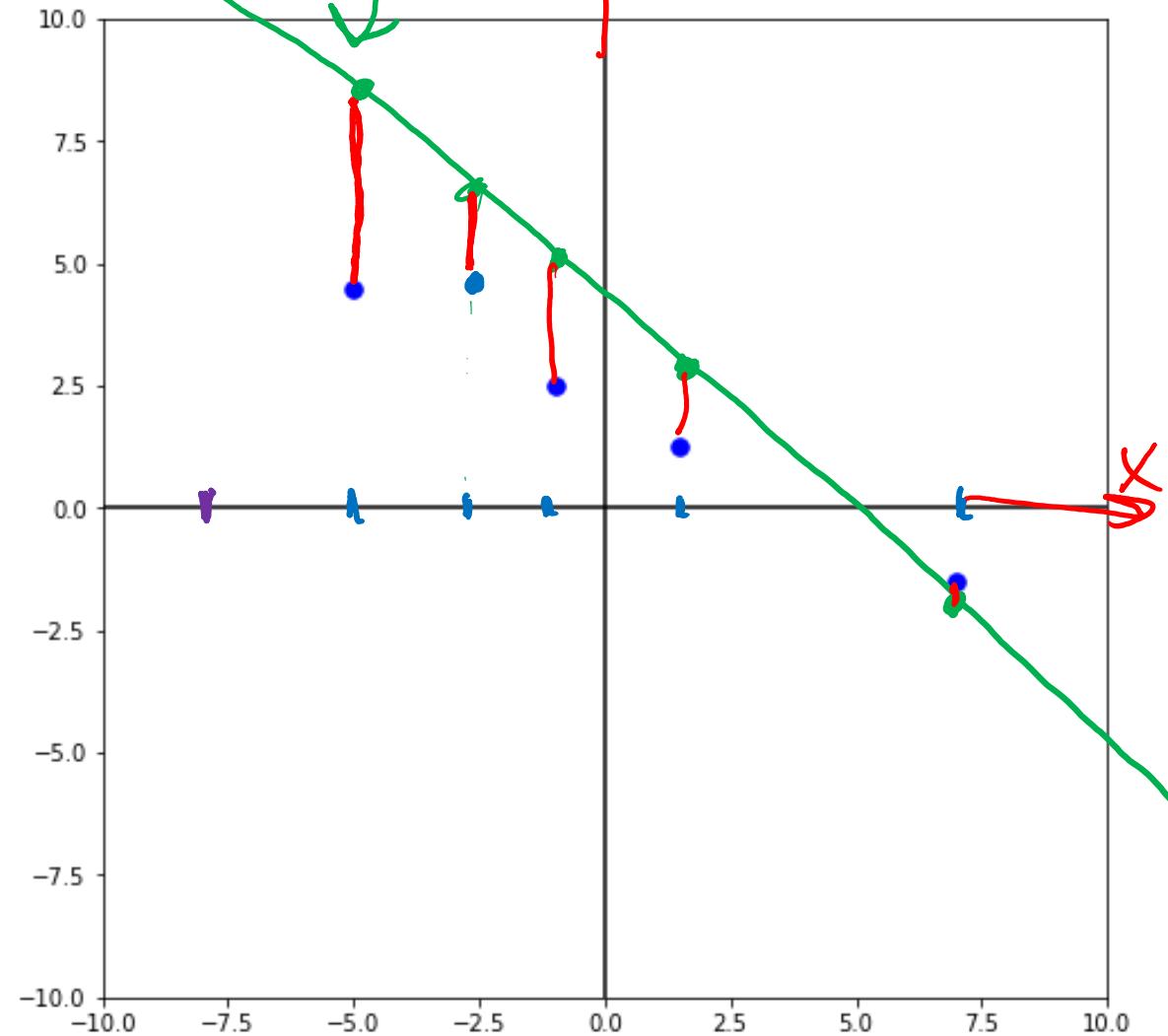
$$\begin{aligned}\mathcal{D} &= \{(x^{(i)}, y^{(i)})\}_{i=1}^4 \\ &= \{(-1, 2.5), \\ &\quad (7, -1.5), \\ &\quad (-5, 4.5), \\ &\quad (1.5, 1.25)\}\end{aligned}$$

$$\sum_{i=1}^N \left(y^{(i)} - \hat{y}^{(i)} \right)^2$$

error

$$\hat{y} = mx + b$$

$$x_{\text{new}} = -8$$



Linear Regression

Last recitation

- 1) Found m that minimized MSE with model $y = mx$, $x \in \mathbb{R}$
- 2) Found m, b that minimized MSE with model $y = mx + b$, $x \in \mathbb{R}$

Tons of summations!

Today

Linear algebra formulation

- 1) Find m that minimizes MSE with model $y = mx$, $x \in \mathbb{R}$
- 2) Find \mathbf{w} that minimizes MSE with model $y = \mathbf{w}^T \mathbf{x}$, $\mathbf{x} \in \mathbb{R}^2$
- 3) Find \mathbf{w}, b that minimizes MSE with model $y = \mathbf{w}^T \mathbf{x} + b$, $\mathbf{x} \in \mathbb{R}^M$

Poll 1

True or False

For any matrices $A, B \in \mathbb{R}^{M \times N}$, the following always holds:

$$(A + B)^T = A^T + B^T$$

Poll 2

True or False

For any matrices $A, B \in \mathbb{R}^{M \times N}$, $C \in \mathbb{R}^{K \times M}$, the following always holds:

$$CA + CB = (A + B)C$$

Poll 3

Select ALL that apply

Which of the following are equal to $\|z\|_2^2$ for any vector $z \in \mathbb{R}^N$?

- A. $z^T z$
- B. $z z^T$
- C. $\begin{bmatrix} z_1^2 \\ \vdots \\ z_N^2 \end{bmatrix}$
- D. None of the above
- E. I have no idea

Poll 4

Select ALL that apply

Which of the following hold for any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$ and $A, B \in \mathbb{R}^{M \times N}$?

- A. $\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$
- B. $A^T B = B^T A$
- C. None of the above
- D. I have no idea

Linear Algebra

Properties

The following hold for any $A, B \in \mathbb{R}^{M \times N}$

- $(AB)^T = B^T A^T$
- $(A^T B)^T = B^T A$
- $(AB^T)^T = BA^T$

The following hold for any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$

- $\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$

(Why is this ok if we can't say $A^T B = B^T A$)

Linear Regression

Linear algebra formation

Find m that minimizes MSE with model $\hat{y} = mx$, $x \in \mathbb{R}$

$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^4$$

$x^{(i)}$	$y^{(i)}$
2	0
0	-1
-3	0
1	2

Linear Regression

Linear algebra formation

Find m that minimizes MSE with model $\hat{y} = mx$, $x \in \mathbb{R}$

$$J(m; \mathbf{x}, \mathbf{y}) = \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2$$

$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^4$$

$x^{(i)}$	$y^{(i)}$
2	0
0	-1
-3	0
1	2

Derive the following expansion $J(m; \mathcal{D})$

Figure out each step, given the provided justification

1 input feature
No bias term
 $\hat{y} = mx \quad m, x \in \mathbb{R}$
All data
 $\mathbf{y}, \mathbf{x} \in \mathbb{R}^N$

$$J(m; \mathbf{x}, \mathbf{y}) = \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2$$

=

Justification

$$\|\mathbf{z}\|_2^2 = \mathbf{z}^T \mathbf{z}$$

=

$$(A + B)^T = A^T + B^T$$

=

$$(A + B)C = AC + BC \text{ and} \\ C(A + B) = CA + CB$$

$$= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m \mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}]$$

$$\mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$$

Linear Regression

Linear algebra formation

Find m that minimizes MSE with model $\hat{y} = mx$, $x \in \mathbb{R}$

$$\begin{aligned} J(m; \mathbf{x}, \mathbf{y}) &= \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2 \\ &= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m \mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}] \end{aligned}$$

What shape is $J(m)$?

$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^4$$

$x^{(i)}$	$y^{(i)}$
2	0
0	-1
-3	0
1	2

Poll 5

True or False

The following MSE objective function is always a parabola going up (a U shape, rather than \cap) regardless of the data in \mathbf{x}, \mathbf{y} :

$$\begin{aligned} J(m; \mathbf{x}, \mathbf{y}) &= \frac{1}{N} \|\mathbf{y} - m\mathbf{x}\|_2^2 \\ &= \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m\mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}] \end{aligned}$$

Linear Regression

$$J(m; \mathbf{x}, \mathbf{y}) = \frac{1}{N} [\mathbf{y}^T \mathbf{y} - 2m \mathbf{y}^T \mathbf{x} + m^2 \mathbf{x}^T \mathbf{x}]$$

Linear and Convex Functions

Optimization

Linear function

If $f(\mathbf{x})$ is linear, then:

- $f(\mathbf{x} + \mathbf{z}) = f(\mathbf{x}) + f(\mathbf{z})$
- $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) \quad \forall \alpha$
- $f(\alpha \mathbf{x} + (1 - \alpha) \mathbf{z}) = \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{z}) \quad \forall \alpha$

Optimization

Convex function

If $f(\mathbf{x})$ is convex, then:

- $f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{z}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{z}) \quad \forall 0 \leq \alpha \leq 1$

Convex optimization

If $f(\mathbf{x})$ is convex, then:

- Every local minimum is also a global minimum ☺