

1 Lagrange Multipliers for PCA

Consider the following optimization where A is a symmetric matrix:

$$\begin{aligned}\hat{\mathbf{v}} &= \underset{\mathbf{v}}{\operatorname{argmax.}} \quad \mathbf{v}^T A \mathbf{v} \\ \text{s.t.} \quad &\|\mathbf{v}\|_2^2 = 1\end{aligned}$$

1. Formulate the Lagrangian, $\mathcal{L}(\mathbf{v}, \lambda)$.

Lagrangian

Solution

$$\mathcal{L}(\mathbf{v}, \lambda) = \mathbf{v}^T A \mathbf{v} - \lambda(\|\mathbf{v}\|_2^2 - 1)$$

2. Write the gradient of the Lagrangian with respect to \mathbf{v} , $\nabla_{\mathbf{v}} \mathcal{L}(\mathbf{v}, \lambda)$.

$\nabla_{\mathbf{v}} \mathcal{L}$

Solution

$$\mathcal{L}(\mathbf{v}, \lambda) = \mathbf{v}^T A \mathbf{v} - \lambda(\|\mathbf{v}\|_2^2 - 1)$$

$$\nabla_{\mathbf{v}} \mathcal{L}(\mathbf{v}, \lambda) = 2A\mathbf{v} - 2\lambda\mathbf{v}$$

3. After setting $\nabla_{\mathbf{v}} \mathcal{L}(\mathbf{v}, \lambda)$ equal to zero, what can you say about the relationship between λ , \mathbf{v} , and the eigenvalues and eigenvectors of A ?

Eigenvectors

Solution

$$2A\mathbf{v} - 2\lambda\mathbf{v} = 0$$

$$A\mathbf{v} = \lambda\mathbf{v}$$

\mathbf{v} is an eigenvector of A and λ is the corresponding eigenvalue of A !