
Announcements
Next week

HW3

▪ Out late tonight

▪ Due Sat 10/9

Quizzes

▪ Mon 10/4,   last 15 min. of class (calculus, optimization, Lagrange)

▪ Mon 10/11, last 15 min. of class (probability, statistics)



Mathematical 
Foundations for 
Machine Learning

Statistics

Instructor: Pat Virtue



Plan
Recitation

Trick coin

▪ Finding the best parameters

▪ Among five different buckets

▪ Plotting the log likelihood vs q

Today

Maximum likelihood estimation

Two applications of Bayes rule

Conditional likelihood

Expectation

Variance



Likelihood
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.



Likelihood and i.i.d
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

i.i.d.: Independent and identically distributed



Bernoulli Likelihood
Bernoulli distribution:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙 𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1
1 − 𝜙, 𝑦 = 0

What is the likelihood for three i.i.d. samples, given parameter 𝜙:

𝒟 = {𝑦 1 = 1, 𝑦 2 = 1, 𝑦 3 = 0}

ς𝑖=1
𝑁 𝑃(𝑌 = 𝑦 𝑖 ∣ 𝜙)

= 𝜙 ⋅ 𝜙 ⋅ 1 − 𝜙



MLE



Estimating Parameters with Likelihood
We model the outcome of a single mysterious weighted-coin flip as a 
Bernoulli random variable:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1 (𝐻𝑒𝑎𝑑𝑠)

1 − 𝜙, 𝑦 = 0 𝑇𝑎𝑖𝑙𝑠

Given the ordered sequence of coin flip outcomes:
1, 0, 1, 1

What is the estimate of parameter ෠𝜙?



Estimating Parameters with Likelihood
We model the outcome of a single mysterious weighted-coin flip as a 
Bernoulli random variable:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1 (𝐻𝑒𝑎𝑑𝑠)

1 − 𝜙, 𝑦 = 0 𝑇𝑎𝑖𝑙𝑠

Given the ordered sequence of coin flip outcomes:
1, 0, 1, 1

What is the estimate of parameter ෠𝜙?

𝑝 𝐷 𝜙 = 𝜙 ⋅ 𝜙 ⋅ 1 − 𝜙 ⋅ 𝜙

= 𝜙3 1 − 𝜙 1



Likelihood and Maximum Likelihood Estimation
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many 
different values of the parameters)

Maximum Likelihood Estimation (MLE): Find the parameter value that 
maximizes the likelihood.



MLE as Data Increases
Given the ordered sequence of coin flip outcomes:

1, 0, 1, 1

p(𝒟 ∣ 𝜙) =ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0

What happens as we flip more coins?



MLE for Gaussian
Gaussian distribution:

𝑌 ∼ 𝒩 𝜇, 𝜎2

𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2

What is the log likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

𝒟 = {𝑦 1 = 65, 𝑦 2 = 95, 𝑦 3 = 85}

𝐿 𝜇, 𝜎2 = ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2 ෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽



MLE for Gaussian
Assume that exam scores are drawn independently from the same 
Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is the 
best fit (the highest likelihood)?

𝑝 𝒟 𝜇, 𝜎2 =ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2



MLE
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Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

Slide credit: CMU MLD Matt Gormley



MLE Recipe



Likelihood and Log Likelihood
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many 
different values of the parameters)



Maximum Likelihood Estimation

MLE of parameter 𝜃 for i.i.d. dataset 𝒟 = 𝑦(𝑖)
𝑖=1

𝑁

መ𝜃𝑀𝐿𝐸 = argmax
𝜃

𝑝(𝒟 ∣ 𝜃)



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log likelihood

J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



MLE for Gaussian
Gaussian distribution:

𝑌 ∼ 𝒩 𝜇, 𝜎2

𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2

What is the log likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

𝒟 = {𝑦 1 = 65, 𝑦 2 = 95, 𝑦 3 = 85}

𝐿 𝜇, 𝜎2 =

ℓ 𝜇, 𝜎2 =

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2

෍

𝑖=1

𝑁

−log 2𝜋𝜎2 −
𝑦(𝑖) − 𝜇

2

2𝜎2

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

෍

𝑖

𝑁

log 𝑝 𝑦 𝑖 𝜽



Exercise: MLE for Exponential
Exponential distribution pdf:

𝑓 𝑥 = 𝜆𝑒−𝜆𝑥



Two Applications of Bayes Rule



Prev Recitation
City classification



Poll 2
Which of these terms is the likelihood?

𝑝 𝑦 𝑥 =
𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝(𝑥)

BA C

D



Bayes Rule
Terminology

𝑝 𝑦 𝑥 =
𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝(𝑥)



Bayes Rule
Inserting parameters

𝑝 𝑦 𝑥 =
𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝(𝑥)



Bayes Rule
Another way to use Bayes rule

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)



Poll 3

Where do we plug in the pdf, 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)

BA C

D



MLE vs. MAP
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Prior

Maximum Likelihood 
Estimate (MLE)

Maximum a posteriori
(MAP) estimate

Slide credit: CMU MLD Matt Gormley



Expectation and Variance



Expectation and Variance

30

• Discrete random variables:

• Continuous random variables:

The expected value of X is E[X]. Also called the mean.

Slide credit: CMU MLD Matt Gormley



Expectation and Variance
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The variance of X is Var(X).

• Discrete random variables:

• Continuous random variables:

Slide credit: CMU MLD Matt Gormley


