Announcements

HW3
= Qut late tonight
= Due Sat 10/9

Quizzes

= Mon 10/4, last 15 min. of class (calculus, optimization, Lagrange)
= Mon 10/11, last 15 min. of class (probability, statistics)



Mathematical

oundations for
Machi

ne Learning

Statistics

Instructor: Pat Virtue



Plan

Recitation
Trick coin

" Finding the best parameters
= Among five different buckets
" Plotting the log likelihood vs q

Today

Maximum likelihood estimation
Two applications of Bayes rule
Conditional likelihood
Expectation

Variance



Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.
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Likelihood and i.i.c DAVAARVANIVAR

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 0.

ii.d.: Independent and identically distributed
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Bernoulli Likelihood % (D' 9>

Bernoulli distribution:

¥ ~Bern(¢)  p(y | 9) = {f'_(,,, -

What is the likelihood for three i.i.d. samples, given parameter ¢:
D={yM =1,y@ =1,y8) =)

0] @rﬂ’i‘il P(Y =yW | py=—-_
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Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a
Bernoulli random variable:

Y ~ Bern(¢)
o, y =1 (Heads)

Py 1 4) = {1 — o, y =0 (Tails)

Given the ordered sequence of coin flip outcomes:
11,0,1, 1]

What is the estimate of parameter ¢?



Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a
Bernoulli random variable:

Y ~ Bern(¢)
o, y =1 (Heads)

Py 1 4) = {1 — o, y =0 (Tails)

Given the ordered sequence of coin flip outcomes:

11,0,1,1] o0 | )

What is the estimate of parameter ¢?

p(DIp)=¢-¢-(1-¢)-¢

= ¢3(1-¢)'




Likelihood and Maximum Likelihood Estimation

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many
different values of the parameters)

Maximum Likelihood Estimation (MLE): Find the parameter value that
maximizes the likelihood.



MLE as Data Increases

Given the ordered sequence of coin flip outcomes:
11,0,1, 1]

N
p@1¢)=| [p(y@ 1) = ¢M=1(1- @)=

What happens as we flip more coins?



MLE for Gaussian

Gaussian distribution:
Y ~ N(u, 02)

1 _(ZV_N)Z

p(yluo?)= o€ 2

What is the log likelihood for three i.i.d. samples, given parameters y, 0%?
D = {yM =65,y =95, y3) = g5}
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MLE for Gaussian

Assume that exam scores are drawn independently from the same
Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is the
best fit (the highest likelihood)?
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MLE

Suppose we have data D = {z(V} V|

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. N .
""" = argmax Hp(x(z) 0)
0

1=1
Maximum Likelihood Estimate (MLE)
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MLE Recipe



‘ Z = I
Likelihood and Log Likelihood A 7 b2

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

p(D]O) =T p(16)

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many
different values of the parameters)

/ikelihod . (& ;D) = p(D[8Y =T p (510
Jog Jikelhuod ﬂ(@ D) = /oj o(Dldy= 2 log p(¥[9)



Maximum Likelihood Estimation

MLE of parameter 0 for i.i.d. dataset D = {y(i)}i.v:l
0z = argmaxp(D | 6)
6



Recipe for Estimation

MLE

1. Formulate the likelihood, p(D | 8)

2. Set objective J(0) equal to negative log likelihood
J(8) = —logp(D|6O)

3. Compute derivative of objective, d/ /060

4. Find 8, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



MLE for Gaussian

Gaussian distribution:
Y ~ N(u, 02)

1 _(y_ﬂ)z

p(yluo?)= o€ 2

What is the log likelihood for three i.i.d. samples, given parameters y, 0%?
D = {yM =65,y =95, y3) = g5}
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Exercise: MLE for Exponential

Exponential distribution pdf:
fx) =A™



Two Applications of Bayes Rule



Prev Recitation

City classification

There are three nearby cities: City A, City B, and City C. Let Y ~ Categorical(a, b, c) be a categorical
distribution where Y = 1 means a randomly sampled sensoris in City A, Y = 2 meansitisin City B, and

Y = 3 meansitisin City C.
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Poll 2

Which of these terms is the likelihood?

A B C
N\ AW v
by | x) _prlxly) p(y)
p(x)
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Bayes Rule

Terminology

p(x|y)p(y)

p(ylx)= 500



Bayes Rule

Inserting parameters

p(x|y)p®)

p(ylx)= > 00)



Bayes Rule

Another way to use Bayes rule

p(x16)p(0)

p(01x)= 5 00)



Poll 3
Where do we plug in the pdf, f(x) = le™*

A B C
. N /
- p(x16)p(0)
pLo T === 5%
N

D



MLE vs. MAP

Suppose we have data D = {z(V1N

Slide credit: CMU MLD Matt Gormley



Expectation and Variance



Expectation and Variance

The expected value of X is E[X]. Also called the mean.

* Discrete random variables:

Suppose X can take any value in the set &.

E[X]= ) ap(z)

reX

Slide credit: CMU MLD Matt Gormley
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Expectation and Variance

The variance of X is Var(X).
Var(X) = E[(X - E[X])?]

 Discrete random variables:

Var(X) = 3 (v — p)*p(a)

reX

Slide credit: CMU MLD Matt Gormley



