

Semi-supervised Learning

Machine Learning 10-601B

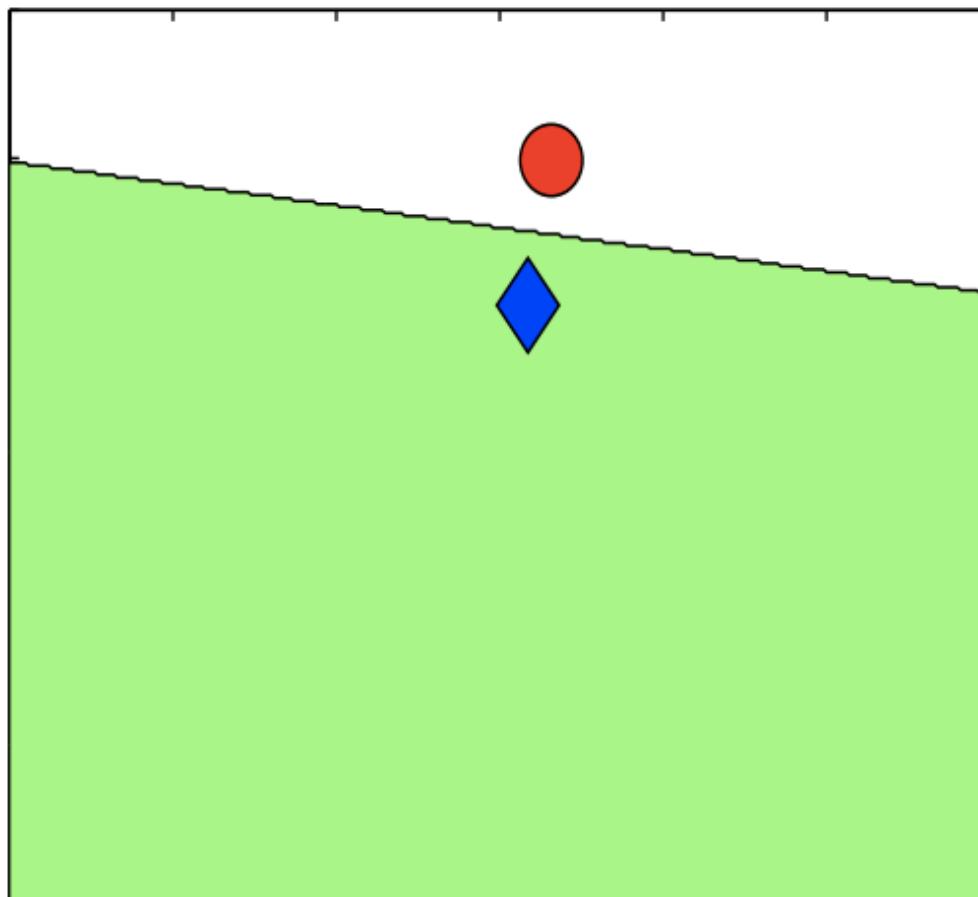
Seyoung Kim

Many of these slides are derived from Tom
Mitchell and Ziv Bar-Joseph. Thanks!

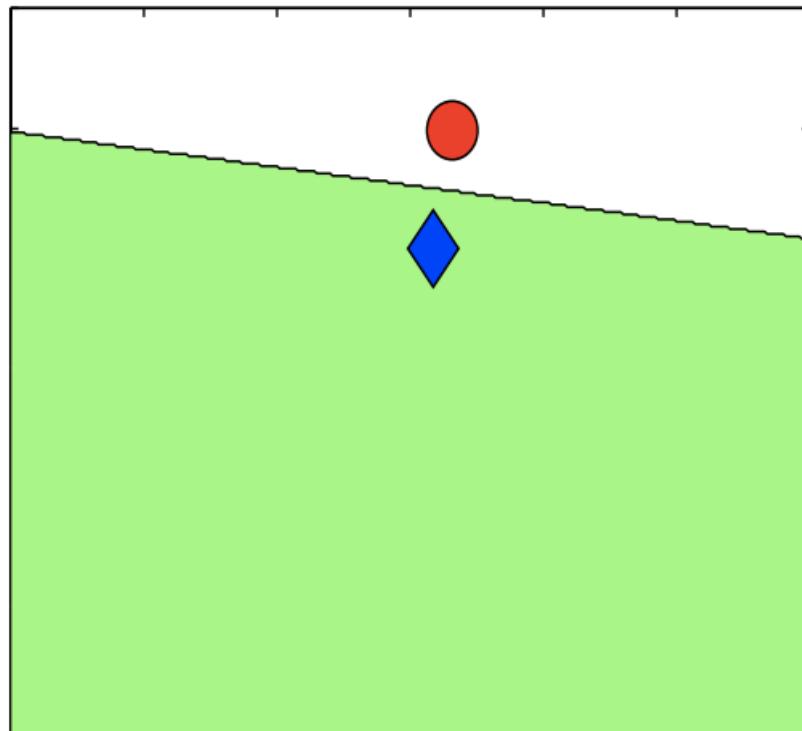
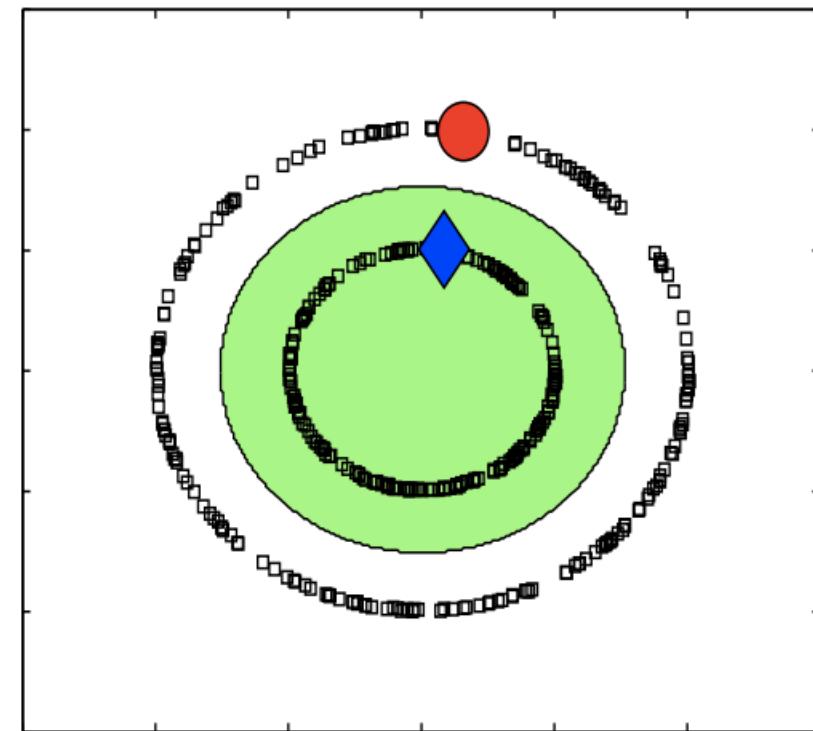
Can Unlabeled Data improve supervised learning?

- Important question! In many cases, unlabeled data is plentiful, labeled data expensive
 - Medical outcomes ($x=$ <patient, symptom>, y =treatment outcome)
 - Text classification (x =document, y =labels/category)
 - Customer modeling (x =user actions, y =user intent)

Classification with labeled data



Classification with labeled + unlabeled data



When can Unlabeled Data help supervised learning?

Consider setting:

- Set X of instances drawn from unknown distribution $P(X)$
- Wish to learn target function $f: X \rightarrow Y$ (or, $P(Y|X)$)
- Given a set H of possible hypotheses for f

Given:

- iid labeled examples $L = \{\langle x_1, y_1 \rangle \dots \langle x_m, y_m \rangle\}$
- iid unlabeled examples $U = \{x_{m+1}, \dots, x_{m+n}\}$

Determine:

$$\hat{f} \leftarrow \arg \min_{h \in H} \Pr_{x \in P(X)} [h(x) \neq f(x)]$$

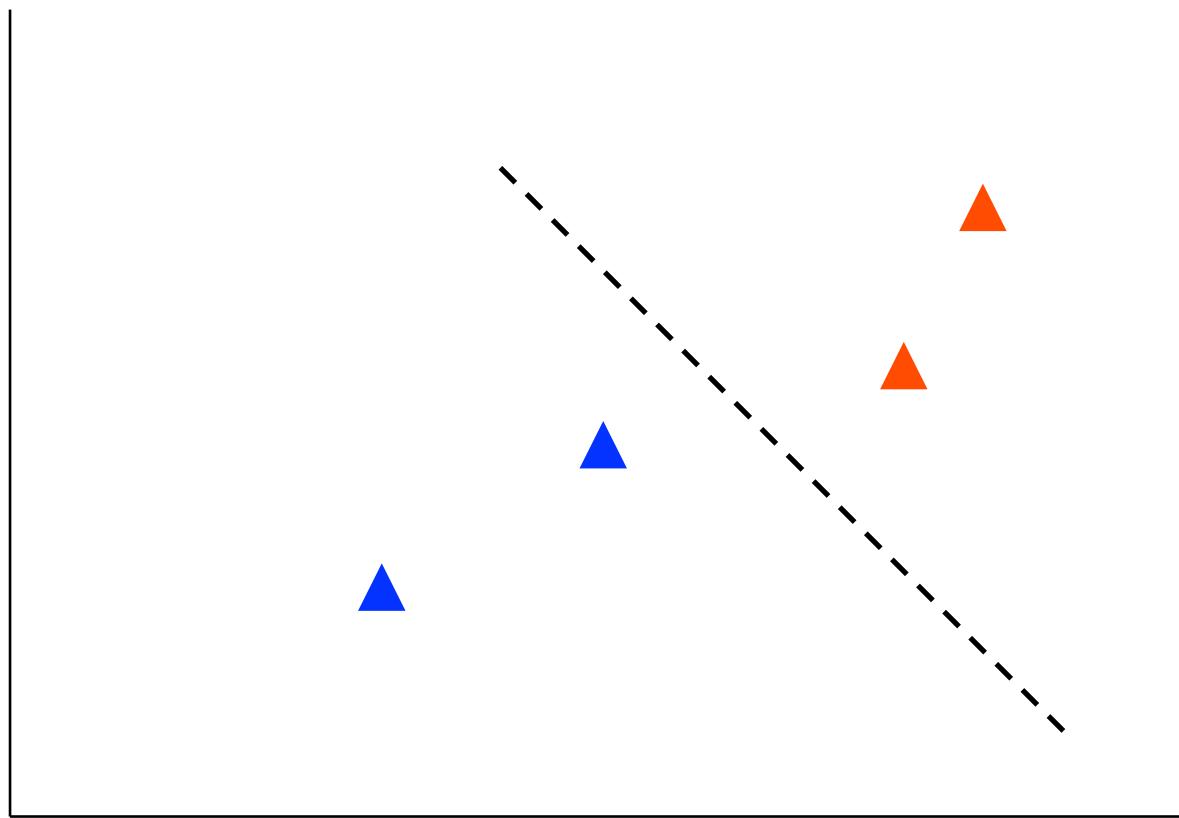
Four Ways to Use Unlabeled Data for Supervised Learning

1. Use to re-weight labeled examples
2. Use to help EM learn class-specific generative models
3. If problem has redundantly sufficient features, use CoTraining
4. Use to detect/preempt overfitting

1. Use unlabeled data to reweight labeled examples

- Most machine learning algorithms (neural nets, decision trees) attempt to *minimize errors over labeled examples*
- But our ultimate goal is to *minimize error over future examples* drawn from the same underlying distribution
- If we know the underlying distribution, we should weight each training example by its probability according to this distribution
- Unlabeled data allows us to estimate this distribution more accurately, and to reweight our labeled examples accordingly

Example



1. reweight labeled examples

Can use $U \rightarrow \hat{P}(X)$ to alter optimization problem

- Wish to find

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

- Often approximate as

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

1 if hypothesis
h disagrees
with true
function f,
else 0

1. reweight labeled examples

Can use $U \rightarrow \hat{P}(X)$ to alter optimization problem

- Wish to find

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

1 if hypothesis
h disagrees
with true
function f,
else 0

- Often approximate as

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

of times we
have x in the
labeled set

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x, L)}{|L|}$$

1. reweight labeled examples

Can use $U \rightarrow \hat{P}(X)$ to alter optimization problem

- Wish to find

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

1 if hypothesis
h disagrees
with true
function f,
else 0

- Often approximate as

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

of times we
have x in the
labeled set

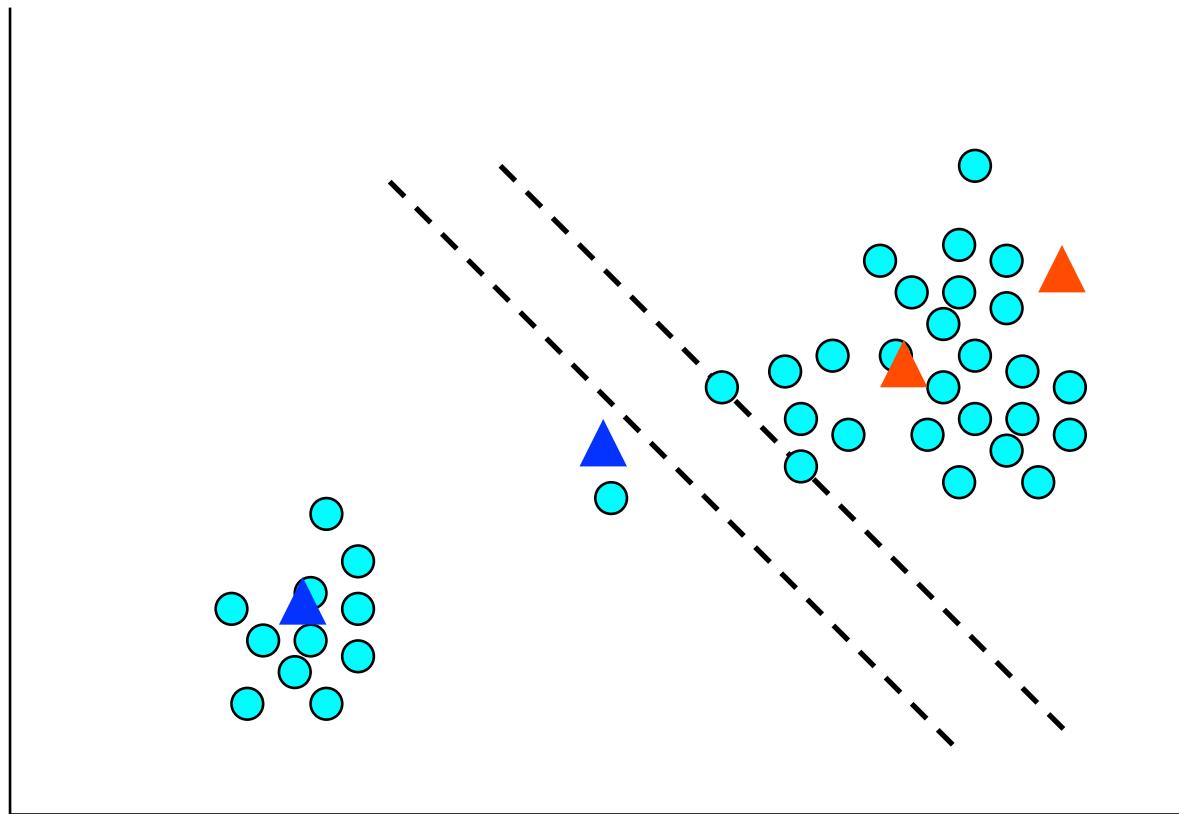
$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x, L)}{|L|}$$

of times
we have x
in the
unlabeled
set

- Can use U for improved approximation:

$$\hat{f} \leftarrow \operatorname{argmin}_{h \in H} \sum_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x, L) + n(x, U)}{|L| + |U|}$$

Example



2. Improve EM clustering algorithms

- Consider completely unsupervised clustering, where we assume data X is generated by a **mixture** of probability distributions, one for each cluster
 - For example, Gaussian mixtures
- Some classifier learning algorithms such **as Gaussian Bayes classifiers** also assumes the data X is generated by a mixture of distributions, one for each class Y
- Supervised learning: estimate $P(X|Y)$ from labeled data
- Opportunity: estimate $P(X|Y)$ from labeled and unlabeled data, using EM as in clustering

Bag of Words Text Classification

aardvark	0
about	2
all	2
Africa	1
apple	0
anxious	0
...	
gas	1
...	
oil	1
...	
Zaire	0

Baseline: Naïve Bayes Learner

Train:

For each class c_j of documents

1. Estimate $P(c_j)$
2. For each word w_i estimate $P(w_i | c_j)$

Classify (doc):

Assign doc to most probable class

$$\arg \max_j P(c_j) \prod_{w_i \in doc} P(w_i | c_j)$$

Naïve Bayes assumption: words are conditionally independent, given class

Faculty		Students		Courses	
associate	0.00417	resume	0.00516	homework	0.00413
chair	0.00303	advisor	0.00456	syllabus	0.00399
member	0.00288	student	0.00387	assignments	0.00388
ph	0.00287	working	0.00361	exam	0.00385
director	0.00282	stuff	0.00359	grading	0.00381
fax	0.00279	links	0.00355	midterm	0.00374
journal	0.00271	homepage	0.00345	pm	0.00371
recent	0.00260	interests	0.00332	instructor	0.00370
received	0.00258	personal	0.00332	due	0.00364
award	0.00250	favorite	0.00310	final	0.00355

Departments		Research Projects		Others	
departmental	0.01246	investigators	0.00256	type	0.00164
colloquia	0.01076	group	0.00250	jan	0.00148
epartment	0.01045	members	0.00242	enter	0.00145
seminars	0.00997	researchers	0.00241	random	0.00142
schedules	0.00879	laboratory	0.00238	program	0.00136
webmaster	0.00879	develop	0.00201	net	0.00128
events	0.00826	related	0.00200	time	0.00128
facilities	0.00807	arpa	0.00187	format	0.00124
eople	0.00772	affiliated	0.00184	access	0.00117
postgraduate	0.00764	project	0.00183	begin	0.00116

Expectation Maximization (EM) Algorithm

- Use labeled data L to learn initial classifier h

Loop:

- E Step:
 - Assign probabilistic labels to U , based on h
- M Step:
 - Retrain classifier h using both L (with fixed membership) and assigned labels to U (soft membership)
- Under certain conditions, guaranteed to converge to locally maximum likelihood h

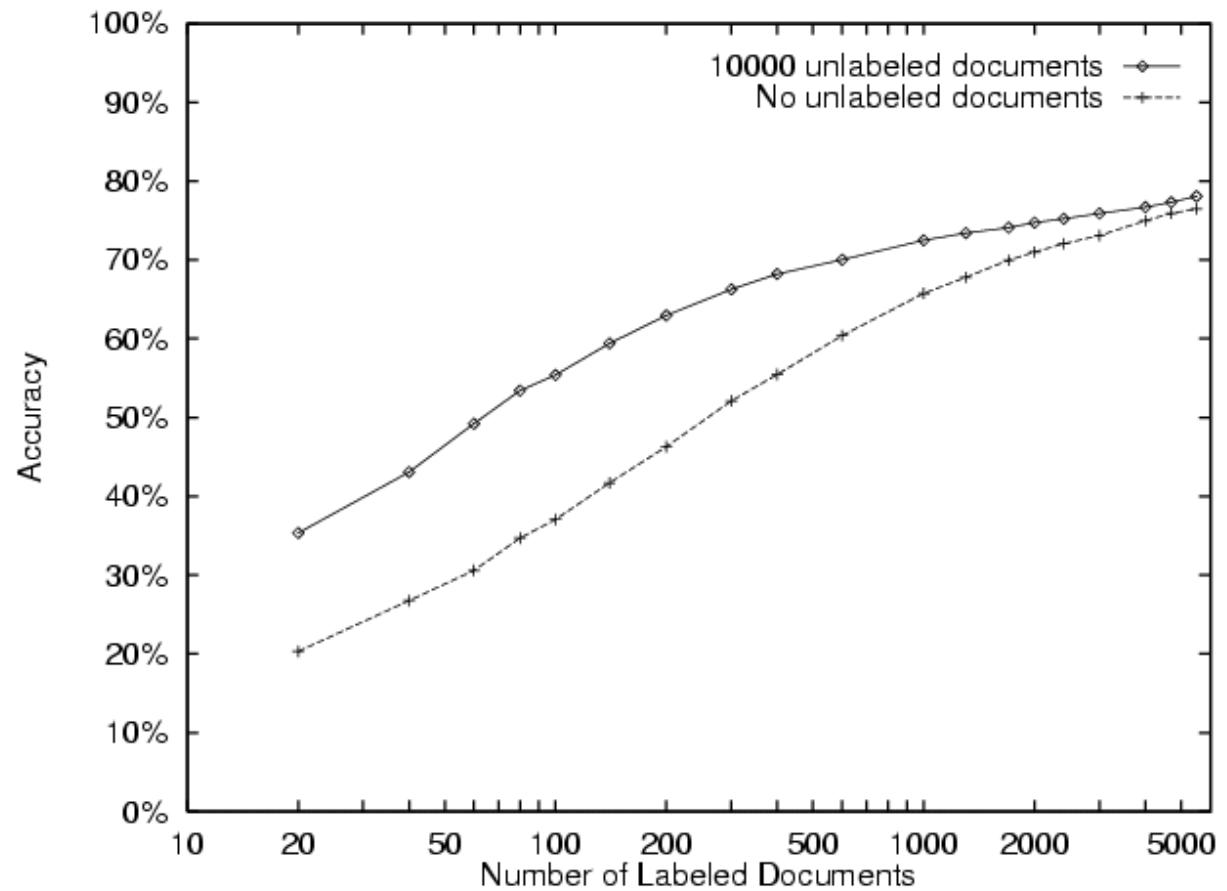
Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0	Iteration 1	Iteration 2
intelligence	DD	D
DD	D	DD
artificial	lecture	lecture
understanding	cc	cc
DDw	D^*	$DD:DD$
dist	$DD:DD$	due
identical	handout	D^*
rus	due	homework
arrange	problem	assignment
games	set	handout
dartmouth	tay	set
natural	$DDam$	hw
cognitive	yurttas	exam
logic	homework	problem
proving	kfoury	$DDam$
prolog	sec	postscript
knowledge	postscript	solution
human	exam	quiz
representation	solution	chapter
field	assaf	ascii

Using one
labeled example
per class

Experimental Evaluation

Newsgroup postings
– 20 newsgroups,
1000/group



3. If Problem Setting Provides Redundantly Sufficient Features, use CoTraining

- In some settings, available data features are so redundant that we can train two classifiers using different features
- In this case, the two classifiers should agree on the classification for each unlabeled example
- Therefore, we can use the unlabeled data to constrain training of both classifiers, forcing them to agree

CoTraining

learn $f : X \rightarrow Y$

where $X = X_1 \times X_2$

where x drawn from unknown distribution

and $\exists g_1, g_2 \quad (\forall x) g_1(x_1) = g_2(x_2) = f(x)$

Redundantly Sufficient Features

Professor Faloutsos



my advisor

U.S. mail address:
Department of Computer Science
University of Maryland
College Park, MD 20742
(97-99: on leave at CMU)
Office: 3227 A.V. Williams Bldg
Phone: (301) 405-2695
Fax: (301) 405-6707
Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of [Computer Science](#). (97-98: on leave at CMU)

Join Appointment: [Institute for Systems Research](#) (ISR).

Academic Degrees: Ph.D. and M.Sc. ([University of Toronto](#).); B.Sc. ([Nat. Tech. U. Ath](#)

Research Interests:

- Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- Data mining;

CoTraining Algorithm

[Blum&Mitchell, 1998]

Given: labeled data L,

unlabeled data U

Loop:

Train g_1 (hyperlink classifier) using L

Train g_2 (page classifier) using L

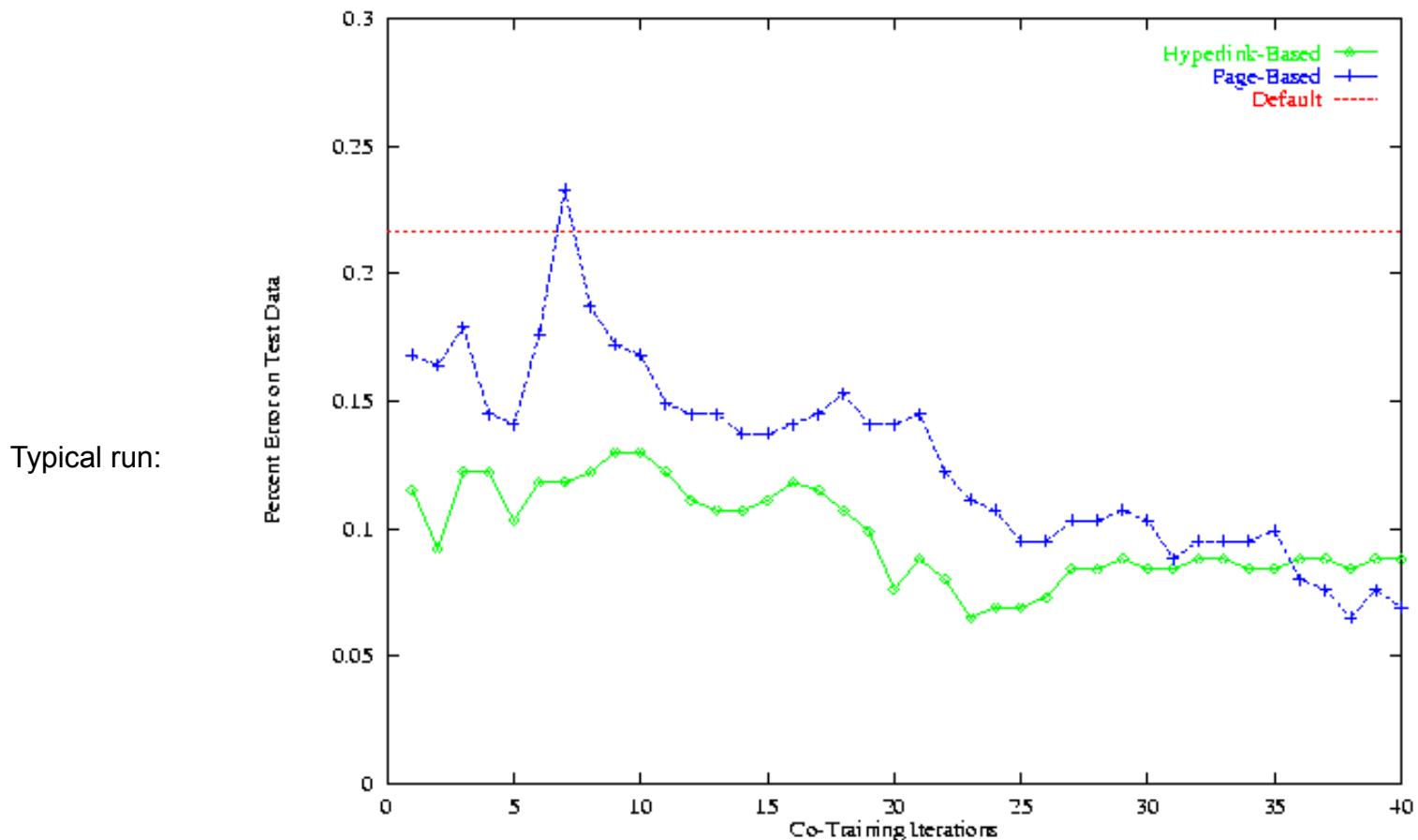
Allow g_1 to label p positive, n negative exams from U

Allow g_2 to label p positive, n negative exams from U

Add the intersection of the self-labeled examples to L

CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0% (when both agree)



4. Use Unlabeled Data to Detect/Preempt Overfitting

- Overfitting is a problem for many learning algorithms (e.g., decision trees, neural networks)
- The symptom of overfitting: complex hypothesis h_2 performs better on training data than simpler hypothesis h_1 , but worse on test data
- Unlabeled data can help detect overfitting, by comparing predictions of h_1 and h_2 over the unlabeled examples
 - The rate at which h_1 and h_2 disagree on U should be the same as the rate on L , unless overfitting is occurring

Defining a distance metric

- Definition of distance metric
 - Non-negative $d(f,g) \geq 0$;
 - symmetric $d(f,g) = d(g,f)$;
 - triangle inequality $d(f,g) \leq d(f,h) + d(h,g)$

- Classification with zero-one loss:

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$

- Regression with squared loss:

$$d(h_1, h_2) \equiv \sqrt{\int (h_1(x) - h_2(x))^2 p(x) dx}$$

Using the distance metric

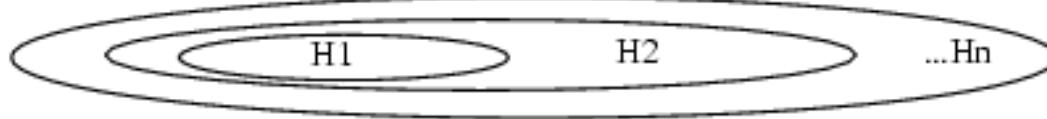
Define *metric* over $H \cup \{f\}$

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$

$$\hat{d}(h_1, f) = \frac{1}{|L|} \sum_{x_i \in L} \delta(h_1(x_i) \neq y_i)$$

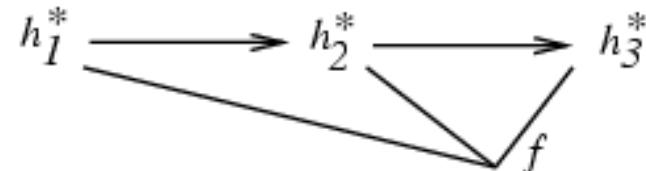
$$\hat{d}(h_1, h_2) = \frac{1}{|U|} \sum_{x \in U} \delta(h_1(x) \neq h_2(x))$$

Organize H into complexity classes

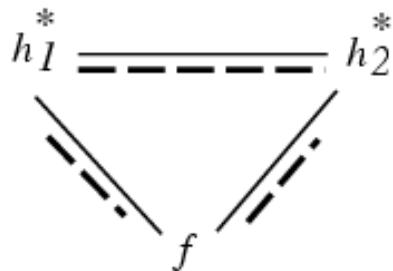


Let h_i^* be hypothesis with lowest $\hat{d}(h, f)$ in H_i

Prefer h_1^* , h_2^* , or h_3^* ?



Idea: Use U to Avoid Overfitting



Note:

- $\hat{d}(h_i^*, f)$ optimistically biased (too short)
- $\hat{d}(h_i^*, h_j^*)$ unbiased
- Distances must obey triangle inequality!

$$d(h_1, h_2) \leq d(h_1, f) + d(f, h_2)$$

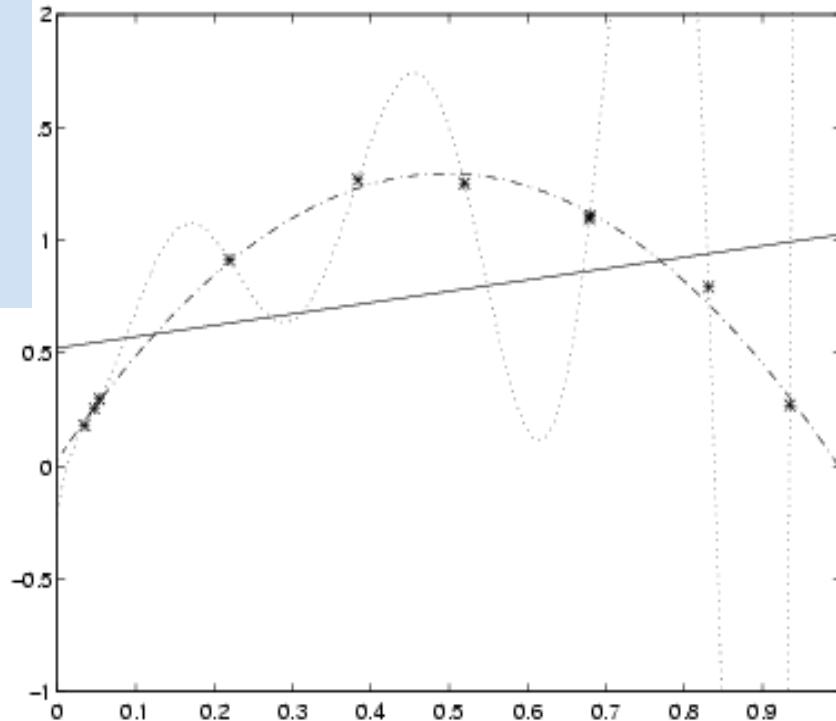
→ Heuristic:

- Continue training until $\hat{d}(h_i, h_{i+1})$ fails to satisfy triangle inequality

Generated y values
contain zero mean

Gaussian noise \mathcal{E}

$y = f(x) + \mathcal{E}$



An example of minimum squared error polynomials of degrees 1, 2, and 9 for a set of 10 training points. The large degree polynomial demonstrates erratic behavior off the training set.

Experimental Evaluation of TRI

[Schuurmans & Southey, MLJ 2002]

- Use it to select degree of polynomial for regression
- Compare to alternatives such as cross validation, structural risk minimization, ...

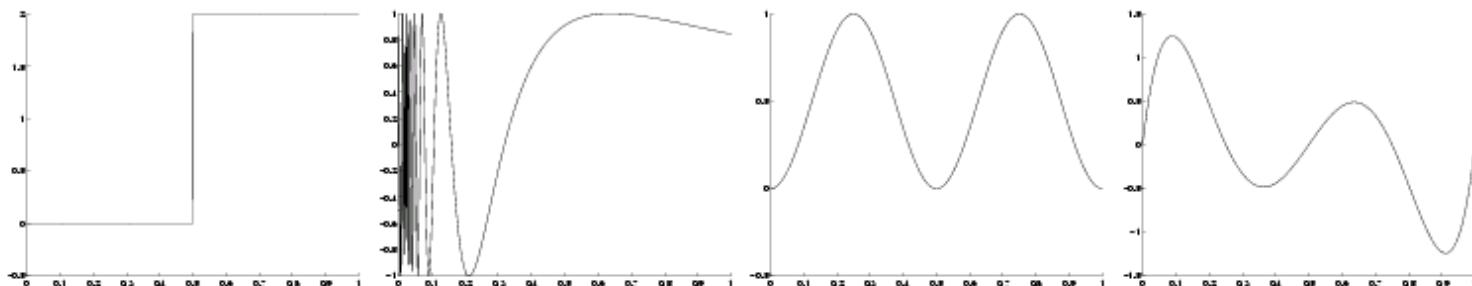


Figure 5: Target functions used in the polynomial curve fitting experiments (in order): $\text{step}(x \geq 0.5)$, $\sin(1/x)$, $\sin^2(2\pi x)$, and a fifth degree polynomial.

Summary

Several ways to use unlabeled data in supervised learning

1. Use to reweight labeled examples
2. Use to help EM learn class-specific generative models
3. If problem has redundantly sufficient features, use CoTraining
4. Use to detect/preempt overfitting

Ongoing research area