
Midterm	
  Review	
  

Machine	
  Learning	
  10-­‐601B	
  

Seyoung	
  Kim	
  

1	
  



Basics	
  on	
  Probability	
  

•  Condi9onal	
  probability	
  

•  Independence,	
  condi9onal	
  independence	
  

•  Bayes’	
  rule,	
  prior,	
  likelihood,	
  posterior	
  probability	
  

•  Chain	
  rule	
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Probability	
  Es7ma7on	
  

•  Density	
  es9ma9on	
  P(Y,X)	
  P(Y|X)	
  and	
  its	
  rela9on	
  to	
  classifica9on	
  
•  For	
  any	
  given	
  probability	
  model,	
  one	
  can	
  es9mate	
  the	
  model	
  

parameters	
  θ	
  given	
  data	
  D	
  with	
  maximum	
  likelihood	
  or	
  MAP	
  
es9ma9ons	
  

•  Conjugate	
  prior	
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Naïve	
  Bayes	
  Classifier	
  

•  Training and testing based on Bayes rule 

•  Conditional independence in Naïve Bayes classifier 

   i.e., that Xi and Xj are conditionally independent given 
Y, for all i≠j 

– Why is it important? 

•  Naïve Bayes 
–  Training using MLE, MAP estimates 
– How to handle discrete and continuous (Gaussian) input 

features 
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Naïve Bayes Algorithm – discrete Xi  

•  Train Naïve Bayes (given data for X and Y)   
 for each* value yk	


  estimate 
  for each* value xij of each attribute Xi	


   estimate 

•  Classify (Xnew)   

 * probabilities must sum to 1, so need estimate only n-1 of these... 5	
  



Logis7c	
  Regression	
  

implies	
  

implies	
  

implies	
  

linear classification 
rule! 6	
  



Training	
  Logis7c	
  Regression:	
  Maximizing	
  
Condi7onal	
  Log	
  Likelihood	
  

Good	
  news:	
  l(W)	
  is	
  concave	
  func9on	
  of	
  W	


Bad	
  news:	
  no	
  closed-­‐form	
  solu9on	
  to	
  maximize	
  l(W)	


	

 Gradient	
  descent!	



7	
  



Genera7ve	
  vs.	
  Discrimina7ve	
  Classifiers	
  

Training	
  classifiers	
  involves	
  es9ma9ng	
  f:	
  X	
  !	
  Y,	
  or	
  P(Y|X)	
  

Genera&ve	
  classifiers	
  (e.g.,	
  Naïve	
  Bayes)	
  
•  Assume	
  some	
  func9onal	
  form	
  for	
  P(X|Y),	
  P(X)	
  (i.e.,	
  P(X,Y))	
  
•  Es9mate	
  parameters	
  of	
  P(X|Y),	
  P(X)	
  directly	
  from	
  training	
  data	
  
•  Use	
  Bayes	
  rule	
  to	
  calculate	
  P(Y|X=	
  xi)	
  

Discrimina&ve	
  classifiers	
  (e.g.,	
  Logis9c	
  regression)	
  
•  Assume	
  some	
  func9onal	
  form	
  for	
  P(Y|X)	
  
•  Es9mate	
  parameters	
  of	
  P(Y|X)	
  directly	
  from	
  training	
  data	
  

-­‐	
  Find	
  θ	
  =	
  argmax	
  w	
  Πi	
  Pr(yi,xi|θ)	
  
-­‐	
  Different	
  assump9ons	
  about	
  genera&ve	
  process	
  for	
  the	
  
data:	
  Pr(X,Y),	
  priors	
  on	
  θ,…	
  

-­‐	
  Find	
  θ	
  =	
  argmax	
  w	
  Πi	
  Pr(yi|xi,θ)	
  
-­‐	
  Different	
  assump9ons	
  about	
  condi9onal	
  probability:	
  
Pr(Y|X),	
  priors	
  on	
  θ,	
  …	
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Genera7ve	
  vs.	
  Discrimina7ve	
  Classifiers	
  

Training	
  classifiers	
  involves	
  es9ma9ng	
  f:	
  X	
  !	
  Y,	
  or	
  P(Y|X)	
  

Genera&ve	
  classifiers	
  (e.g.,	
  Naïve	
  Bayes)	
  
•  Assume	
  some	
  func9onal	
  form	
  for	
  P(X|Y),	
  P(X)	
  (i.e.,	
  P(X,Y))	
  
•  Es9mate	
  parameters	
  of	
  P(X|Y),	
  P(X)	
  directly	
  from	
  training	
  data	
  
•  Use	
  Bayes	
  rule	
  to	
  calculate	
  P(Y|X=	
  xi)	
  

Discrimina&ve	
  classifiers	
  (e.g.,	
  Logis9c	
  regression)	
  
•  Assume	
  some	
  func9onal	
  form	
  for	
  P(Y|X)	
  
•  Es9mate	
  parameters	
  of	
  P(Y|X)	
  directly	
  from	
  training	
  data	
  

-­‐	
  Find	
  θ	
  =	
  argmax	
  w	
  Πi	
  Pr(yi,xi|θ)	
  
-­‐	
  Different	
  assump9ons	
  about	
  genera&ve	
  process	
  for	
  the	
  
data:	
  Pr(X,Y),	
  priors	
  on	
  θ,…	
  

-­‐	
  Find	
  θ	
  =	
  argmax	
  w	
  Πi	
  Pr(yi|xi,θ)	
  
-­‐	
  Different	
  assump9ons	
  about	
  condi9onal	
  probability:	
  
Pr(Y|X),	
  priors	
  on	
  θ,	
  …	
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What	
  are	
  the	
  advantages/
disadvantages	
  of	
  the	
  two	
  
types	
  of	
  classifiers?	
  



Perceptron	
  

•  Another	
  linear	
  but	
  non-­‐probabilis9c	
  classifier	
  
•  Margin-­‐based	
  learning	
  

•  What	
  happens	
  if	
  data	
  are	
  separable	
  or	
  non-­‐separable?	
  

•  Voted	
  perceptron	
  

A B 
instance xi 

   yi 
^ 

   yi 

If mistake: vk+1 = vk  +  yi xi  

[Rosenblan,	
  1957]	
  

Compute: yi = sign(vk . xi ) 
^ 

vk	
  .	
  xi	
  

10	
  



Linear	
  Regression	
  

•  Learn	
  P(Y|X)	
  when	
  Y	
  is	
  con9nuous	
  

•  MLE:	
  How	
  to	
  find	
  one,	
  what	
  it	
  is,	
  computa9onal	
  challenges	
  

•  MAP	
  es9mate:	
  ridge	
  regression,	
  lasso,	
  regulariza9on	
  

where	
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Input	
  layer	
  

output	
  layer	
  

Hidden	
  layer	
  

-­‐ 	
  non-­‐linear	
  decision	
  boundary	
  
-­‐ 	
  M(C)LE	
  training	
  

-­‐ 	
  Non-­‐convex	
  op9miza9on	
  
-­‐ 	
  back-­‐propaga9on	
  
-­‐ 	
  Avoiding	
  overfiqng	
  with	
  early	
  stopping	
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Other	
  non-­‐linear	
  classifiers	
  

•  Decision	
  tree	
  learning	
  
–  What	
  decision	
  trees	
  are	
  
–  How	
  to	
  learn	
  them	
  

•  informa9on	
  gain	
  
–  How	
  to	
  prune	
  them	
  to	
  avoid	
  

overfiqng	
  

•  Nearest	
  neighbor	
  learning	
  
–  No	
  training!	
  
–  At	
  test	
  9me,	
  for	
  each	
  test	
  

sample,	
  find	
  k-­‐nearest	
  
neighbors	
  and	
  classify	
  as	
  
frequent	
  labels	
  among	
  
neighbors	
  

f:	
  <Outlook,	
  Humidity,	
  Wind,	
  Temp>	
  !	
  PlayTennis?	
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Unsupervised	
  Learning	
  

•  Clustering	
  
–  Hierarchical	
  clustering	
  
–  K-­‐means	
  clustering:	
  non-­‐probabilis9c	
  approach	
  
–  Mixture	
  model:	
  probabilis9c	
  interpreta9on	
  of	
  K-­‐means	
  

•  Dimensionality	
  reduc9on	
  
–  Why	
  useful?	
  	
  

–  Principal	
  component	
  analysis	
  

14	
  



K-­‐Means	
  Clustering	
  Algorithm	
  

Find	
  the	
  cluster	
  
means	
  

Re-­‐assign	
  
samples	
  xi’s	
  to	
  
clusters	
  

Iterate	
  un9l	
  
convergence	
  € 

argmaxk || xi − µk ||2
2



Mixture	
  Model:	
  Probability	
  Model	
  for	
  Data	
  
P(X)?	
  



Mixture	
  Model	
  

•  A	
  density	
  model	
  p(x)	
  may	
  be	
  mul9-­‐modal	
  

•  EM	
  algorithm	
  
–  Maximize	
  expected	
  complete	
  data	
  log-­‐

likelihood	
  (Expecta9on	
  is	
  taken	
  with	
  respect	
  to	
  
P(Y|X,	
  θ)	
  

–  E-­‐step	
  and	
  M-­‐step	
  
–  Issues	
  in	
  convergence	
  

Unimodal	
  -­‐	
  Gaussian	
  

Mul9-­‐model:	
  how	
  do	
  we	
  model	
  this?	
  

€ 

p(xn ) = p(xn ,zn = k)
k

∑ p(zn = k)

mixture	
  propor9on	
   mixture	
  component	
  

€ 

= N(x,| µk,Σk )k
∑ πk
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EM	
  Algorithm	
  

Maximiza9on	
  (M)-­‐step:	
  
-­‐	
  Find	
  mixture	
  
parameters	
  

Expecta9on	
  (E)-­‐step:	
  	
  
-­‐ Re-­‐assign	
  samples	
  xi’s	
  
to	
  clusters	
  
-­‐ 	
  Impute	
  the	
  
unobserved	
  values	
  zi	
  

Iterate	
  un9l	
  
convergence	
  



Compu7ng	
  the	
  Components	
  

•  Projec9on	
  of	
  vector	
  x	
  onto	
  an	
  axis	
  (dimension)	
  u	
  is	
  uTx	
  
•  Assume	
  X	
  is	
  a	
  normalized	
  nxp	
  data	
  matrix	
  for	
  n	
  samples	
  and	
  p	
  features.	
  Direc9on	
  of	
  

greatest	
  variability	
  is	
  that	
  in	
  which	
  the	
  average	
  square	
  of	
  the	
  projec9on	
  is	
  greatest:	
   	
  

	
   	
   	
   Maximize	
  	
  (1/n)	
  uTXTXu	
  	
  
	
   	
   	
   	
   s.t	
  	
   	
   uTu	
  =	
  1	
  	
  

	
   	
   Construct	
  Langrangian	
  	
  (1/n)	
  uTXTXu	
  –	
  λuTu	
  	
  
	
   	
   Vector	
  of	
  par9al	
  deriva9ves	
  set	
  to	
  zero	
  
	
   	
   	
   1/n	
  XTXu	
  –	
  λu	
  	
  =	
  0	
  
	
   	
   	
   or	
  equivalently	
  Su	
  –	
  λu	
  	
  =	
  0	
  (S	
  =1/n	
  XTX:	
  covariance	
  matrix)	
  

	
   	
   As	
  u	
  ≠	
  0	
  then	
  u	
  must	
  be	
  an	
  eigenvector	
  of	
  S	
  with	
  eigenvalue	
  	
  λ

–  λ	
  is	
  the	
  principal	
  eigenvalue	
  of	
  the	
  covariance	
  matrix	
  S	
  
–  The	
  eigenvalue	
  denotes	
  the	
  amount	
  of	
  variability	
  captured	
  along	
  that	
  dimension	
  

•  How many principal components?


19	
  

Original	
  Variable	
  A	
  

O
ri
gi
na
l	
  V
ar
ia
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e	
  
B	
  

PC	
  1	
  PC	
  2	
  



Semi-­‐supervised	
  Learning	
  

•  Improving	
  naïve	
  Bayes	
  classifier	
  with	
  unlabeled	
  data	
  

•  EM	
  algorithm	
  
–  Why	
  EM?	
  	
  

–  How	
  to	
  derive	
  it?	
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Bayesian	
  Networks	
  Defini7on	
  

A	
  Bayes	
  network	
  represents	
  the	
  joint	
  probability	
  distribu9on	
  over	
  a	
  
collec9on	
  of	
  random	
  variables	
  

A	
  Bayes	
  network	
  is	
  a	
  directed	
  acyclic	
  graph	
  and	
  a	
  set	
  of	
  condi9onal	
  
probability	
  distribu9ons	
  (CPD’s)	
  

•  Each	
  node	
  denotes	
  a	
  random	
  variable	
  
•  Edges	
  denote	
  dependencies	
  
•  For	
  each	
  node	
  Xi	
  its	
  CPD	
  defines	
  P(Xi | Pa(Xi))	


•  The	
  joint	
  distribu9on	
  over	
  all	
  variables	
  is	
  defined	
  to	
  be	
  

Pa(X) = immediate parents of X in the graph	
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Construc7ng	
  a	
  Bayesian	
  network	
  

•  How	
  do	
  we	
  go	
  about	
  construc9ng	
  a	
  network	
  for	
  a	
  specific	
  
problem?	
  

•  Step	
  1:	
  Iden9fy	
  the	
  random	
  variables	
  
•  Step	
  2:	
  Determine	
  the	
  condi9onal	
  dependencies	
  

•  Step	
  3:	
  Populate	
  the	
  CPTs	
  

Can	
  be	
  learned	
  from	
  observa9on	
  data!	
  

Can	
  reduce	
  the	
  number	
  of	
  parameters!	
  Why?	
  

Condi9onal	
  independencies	
  in	
  Bayesian	
  networks	
  
-­‐	
  Markov	
  blanket:	
  All	
  parent,	
  children	
  and	
  co-­‐parents	
  of	
  children	
  	
  
-­‐	
  D-­‐separa9on:	
  v-­‐structure,	
  non	
  v-­‐structure	
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Markov	
  Blanket,	
  D-­‐separa7on	
  

a	
   f	
  

b	
  
e	
  

c	
  

€ 

a⊥b | c ?

€ 

a⊥b | f ?



Inference/Learning	
  in	
  Bayesian	
  Networks	
  

•  Once	
  the	
  network	
  is	
  constructed,	
  we	
  can	
  use	
  
algorithms	
  for	
  inferring	
  the	
  values	
  of	
  
unobserved	
  variables.	
  

•  For	
  example,	
  in	
  our	
  previous	
  network	
  the	
  
only	
  observed	
  variables	
  are	
  the	
  phone	
  call	
  
and	
  the	
  radio	
  announcement.	
  However,	
  what	
  
we	
  are	
  really	
  interested	
  in	
  is	
  whether	
  there	
  
was	
  a	
  burglary	
  or	
  not.	
  

•  How	
  can	
  we	
  determine	
  that?	
  
1.  Enumera9on	
  	
  
2.  Variable	
  elimina9on	
  
3.  Stochas9c	
  inference	
  

•  Learning	
  parameters	
  given	
  network	
  structure:	
  
MLE,	
  MAP	
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A	
  

J	
   M

B	
   E	
  

	
  	
  	
  	
  B	
  –	
  Did	
  a	
  burglary	
  occur?	
  

	
  	
  	
  	
  E	
  –	
  Did	
  an	
  earthquake	
  occur?	
  

	
  	
  	
  	
  A	
  –	
  Did	
  the	
  alarm	
  go	
  off?	
  
	
  	
  	
  	
  M	
  –	
  Mary	
  calls	
  

	
  	
  	
  	
  J	
  –	
  John	
  calls	
  



A	
  Hidden	
  Markov	
  model	
  

•  A	
  set	
  of	
  states	
  {s1	
  …	
  sn}	
  
	
  	
  	
  	
  -­‐	
  In	
  	
  each	
  9me	
  point	
  we	
  are	
  in	
  exactly	
  one	
  of	
  these	
  states	
  

denoted	
  by	
  qt	
  
•  A	
  set	
  of	
  possible	
  outputs	
  Σ	
  
	
  	
  	
  -­‐	
  At	
  9me	
  t	
  we	
  emit	
  a	
  symbol	
  σ∈Σ	
  

•  Πi,	
  the	
  probability	
  that	
  we	
  start	
  at	
  state	
  si	
  
•  A	
  transi9on	
  probability	
  model,	
  P(qt	
  =	
  si	
  |	
  qt-­‐1	
  =	
  sj)	
  
•  An	
  emission	
  probability	
  model,	
  p(ot	
  =	
  σ	
  |	
  si)	
  

A	
   B	
  

0.2	
  

0.2	
  

0.8	
   0.8	
  

0.5	
   0.5	
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Inference/Learning	
  in	
  HMMs	
  

•  Compu9ng	
  P(Q)	
  and	
  P(qt	
  =	
  si)	
  
	
  	
  	
  	
  -­‐	
  If	
  we	
  cannot	
  look	
  at	
  observa9ons	
  
•  Compu9ng	
  P(Q	
  |	
  O)	
  and	
  P(qt	
  =	
  si	
  |O)	
  
	
  	
  	
  	
  -­‐	
  Forward-­‐backward	
  algorithm	
  
•  Compu9ng	
  argmaxQP(Q	
  |	
  O)	
  
	
  	
  	
  	
  -­‐	
  When	
  we	
  care	
  about	
  the	
  en9re	
  path	
  
	
  	
  	
  	
  -­‐	
  Viterbi	
  algorithm	
  

•  Learning	
  with	
  EM	
  algorithm	
  
–  Why?	
  
–  Inference	
  as	
  a	
  subrou9ne	
  in	
  E	
  step	
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Support	
  Vector	
  Machine	
  as	
  Max	
  Margin	
  
Classifiers	
  

• 	
  Instead	
  of	
  fiqng	
  all	
  points,	
  focus	
  on	
  boundary	
  points	
  

• 	
  Learn	
  a	
  boundary	
  that	
  leads	
  to	
  the	
  largest	
  margin	
  from	
  points	
  on	
  both	
  sides	
  

D	
  

D	
  
Also	
  known	
  as	
  linear	
  
support	
  vector	
  
machines	
  (SVMs)	
  

These	
  are	
  the	
  vectors	
  
suppor9ng	
  the	
  boundary	
  

27	
  



Op7miza7on	
  Problem	
  for	
  Support	
  Vector	
  Machine	
  
Two	
  op9miza9on	
  problems:	
  For	
  the	
  separable	
  and	
  non	
  separable	
  cases	
  

For	
  all	
  	
  x	
  in	
  class	
  +	
  1	
  

wTx+b	
  ≥	
  1	
  

For	
  all	
  	
  x	
  in	
  class	
  -­‐	
  1	
  

wTx+b	
  ≤	
  -­‐1	
  

For	
  all	
  	
  xi	
  in	
  class	
  +	
  1	
  

wTx+b	
  ≥	
  1-­‐	
  εi	
  
For	
  all	
  	
  xi	
  in	
  class	
  -­‐	
  1	
  

wTx+b	
  ≤	
  -­‐1+	
  εi	
  
For	
  all	
  i	
  

εI	
  ≥	
  0	
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Dual	
  SVM	
  for	
  linearly	
  separable	
  case	
  	
  

Our	
  dual	
  target	
  func9on:	
  

Dot	
  product	
  for	
  all	
  
training	
  samples	
  	
  

To	
  evaluate	
  a	
  new	
  sample	
  xj	
  we	
  
need	
  to	
  compute:	
  

Dot	
  product	
  with	
  training	
  
samples	
  	
  

Is	
  this	
  too	
  much	
  computa9onal	
  work	
  (for	
  example	
  
when	
  using	
  transforma9on	
  of	
  the	
  data)?	
  

29	
  How	
  to	
  apply	
  kernel	
  trick?	
  	
  



Dual	
  SVM	
  -­‐	
  interpreta7on	
  

For	
  α’s	
  that	
  are	
  not	
  0	
  
–	
  support	
  vectors!	
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Regularized	
  Regression	
  

•  Recall	
  linear	
  regression:	
  

•  Regularized	
  LR:	
  
–  L2-­‐regularized	
  LR:	
  

	
  	
  	
  	
  	
  where	
  

–  L1-­‐regularized	
  LR:	
  

	
  	
  	
  	
  	
  where	
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Performs	
  a	
  model	
  selec9on	
  directly	
  

€ 

|| β || = βi
2

i
∑

€ 

y = XTβ+ε

€ 

β* = argmaxβ (y −X
Tβ)T (y −XTβ)

= argmaxβ || y −X
Tβ ||2

€ 

β* = argmaxβ || y −X
Tβ ||2 +λ || β ||

€ 

| β | = | βi |
i
∑

€ 

β* = argmaxβ || y −X
Tβ ||2 +λ | β |


