

Midterm Review

Machine Learning 10-601B

Seyoung Kim

Basics on Probability

- Conditional probability
- Independence, conditional independence
- Bayes' rule, prior, likelihood, posterior probability
- Chain rule

Probability Estimation

- Density estimation $P(Y, X)$ $P(Y | X)$ and its relation to classification
- For any given probability model, one can estimate the model parameters θ given data D with maximum likelihood or MAP estimations

- MLE: Choose θ that maximizes the probability of observed data:

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} P(\mathcal{D} | \theta) \\ &= \arg \max_{\theta} \ln P(\mathcal{D} | \theta)\end{aligned}$$

$$\boxed{\frac{d}{d\theta} \ln P(\mathcal{D} | \theta) = 0}$$

- MAP: use most likely parameter:

$$\hat{\theta} = \arg \max_{\theta} P(\theta | \mathcal{D})$$

Naïve Bayes Classifier

- Training and testing based on Bayes rule
- Conditional independence in Naïve Bayes classifier

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_j are conditionally independent given Y , for all $i \neq j$

- Why is it important?

- Naïve Bayes
 - Training using MLE, MAP estimates
 - How to handle discrete and continuous (Gaussian) input features

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (given data for X and Y)

for each* value y_k

estimate $\pi_k \equiv P(Y = y_k)$

for each* value x_{ij} of each attribute X_i

estimate $\theta_{ijk} \equiv P(X_i = x_{ij} | Y = y_k)$

- Classify (X^{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$$

* probabilities must sum to 1, so need estimate only $n-1$ of these...

Logistic Regression

$$P(Y = 1|X = \langle X_1, \dots, X_n \rangle) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

implies

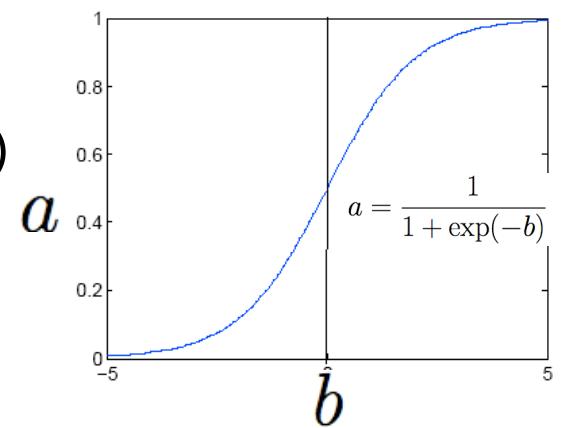
$$P(Y = 0|X = \langle X_1, \dots, X_n \rangle) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

implies

$$\frac{P(Y = 0|X)}{P(Y = 1|X)} = \exp(w_0 + \sum_i w_i X_i)$$

implies

$$\ln \frac{P(Y = 0|X)}{P(Y = 1|X)} = w_0 + \sum_i w_i X_i$$



linear classification rule!

Training Logistic Regression: Maximizing Conditional Log Likelihood

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\begin{aligned} l(W) &\equiv \ln \prod_l P(Y^l | X^l, W) \\ &= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \end{aligned}$$

Good news: $l(W)$ is concave function of W

Bad news: no closed-form solution to maximize $l(W)$

Gradient descent!

Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers (e.g., Naïve Bayes)

- Assume some functional form **for $P(X|Y)$, $P(X)$ (i.e., $P(X,Y)$)**
- Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
- Use Bayes rule to calculate $P(Y|X=x_i)$

- Find $\theta = \operatorname{argmax}_w \prod_i \Pr(y_i, x_i | \theta)$
- Different assumptions about *generative process* for the data: $\Pr(X,Y)$, priors on θ , ...

Discriminative classifiers (e.g., Logistic regression)

- Assume some functional form **for $P(Y|X)$**
- Estimate parameters of $P(Y|X)$ directly from training data

- Find $\theta = \operatorname{argmax}_w \prod_i \Pr(y_i | x_i, \theta)$
- Different assumptions about conditional probability: $\Pr(Y|X)$, priors on θ , ...

Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers (e.g., Naïve Bayes)

- Assume some functional form **for $P(X|Y)$, $P(X)$ (i.e., $P(X,Y)$)**
- Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
- Use Bayes rule to calculate $P(Y|X=x_i)$

What are the advantages/
disadvantages of the two
types of classifiers?

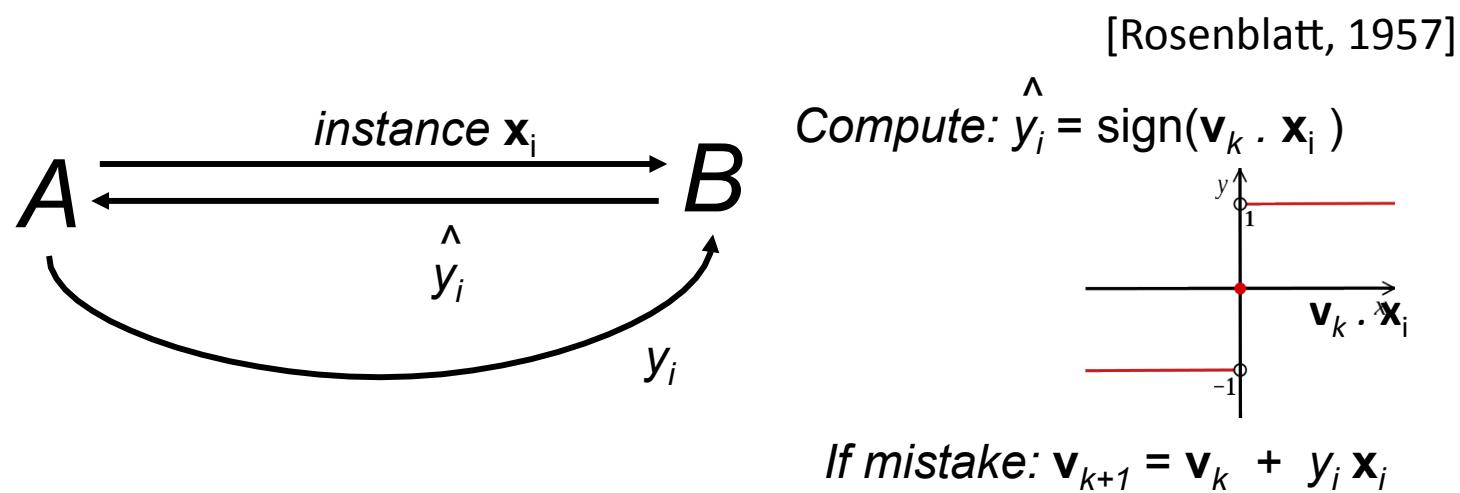
Discriminative classifiers

- Assume some functional form **for $P(Y|X)$**
- Estimate parameters of $P(Y|X)$ directly from training data

- Find $\theta = \operatorname{argmax}_w \prod_i \Pr(y_i|x_i, \theta)$
- Different assumptions about conditional probability:
 $\Pr(Y|X)$, priors on θ , ...

Perceptron

- Another linear but non-probabilistic classifier
- Margin-based learning



- What happens if data are separable or non-separable?
- Voted perceptron

Linear Regression

- Learn $P(Y|X)$ when Y is continuous

$$y = f(x) + \epsilon \quad \text{where} \quad \epsilon \sim N(0, \sigma)$$

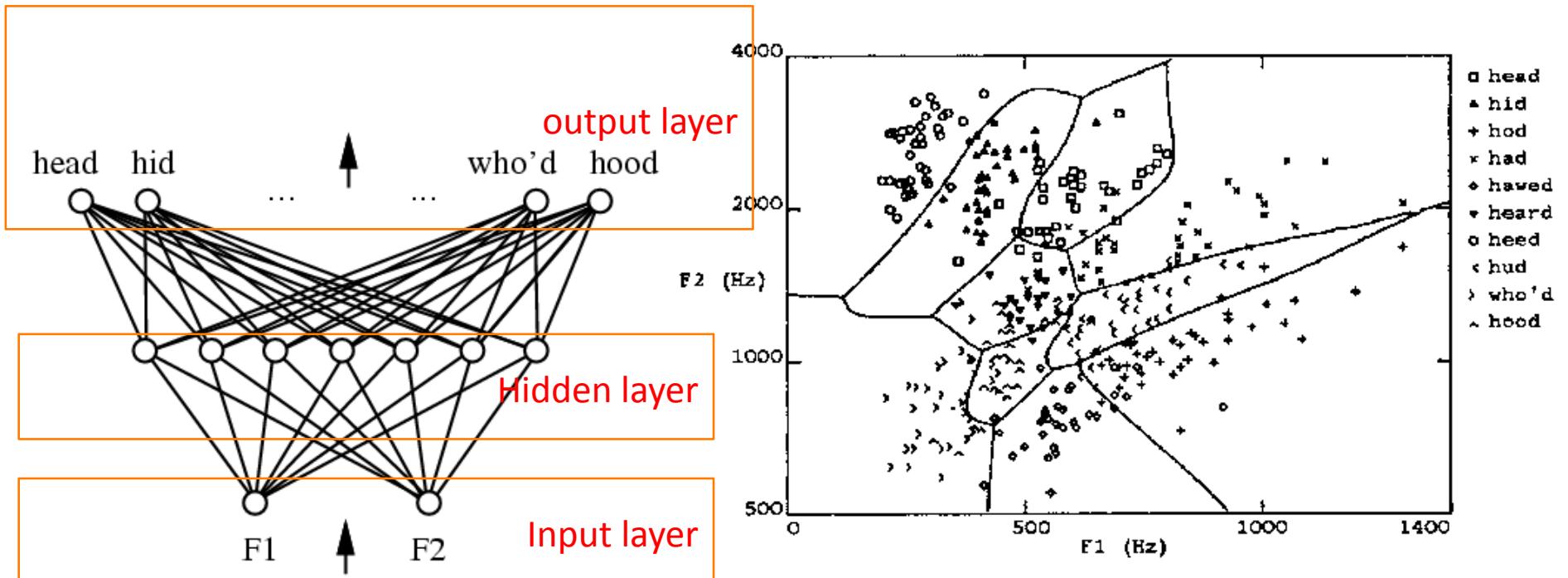
$$f(x) = w_0 + \sum w_i x_i$$

$$p(y|x) = N(w_0 + \sum_i w_i x_i, \sigma)$$

- MLE: How to find one, what it is, computational challenges
- MAP estimate: ridge regression, lasso, regularization

Multilayer Networks of Sigmoid Units

$$\text{unit output} = \frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)}$$

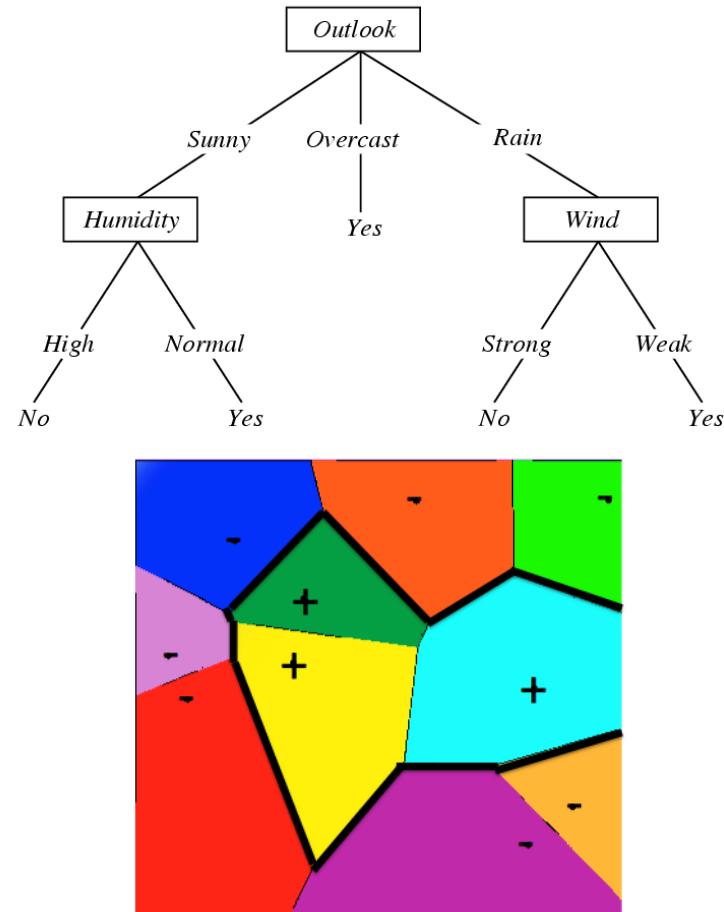


- non-linear decision boundary
- M(C)LE training
 - Non-convex optimization
 - back-propagation
 - Avoiding overfitting with early stopping

Other non-linear classifiers

- Decision tree learning
 - What decision trees are
 - How to learn them
 - information gain
 - How to prune them to avoid overfitting
- Nearest neighbor learning
 - No training!
 - At test time, for each test sample, find k-nearest neighbors and classify as frequent labels among neighbors

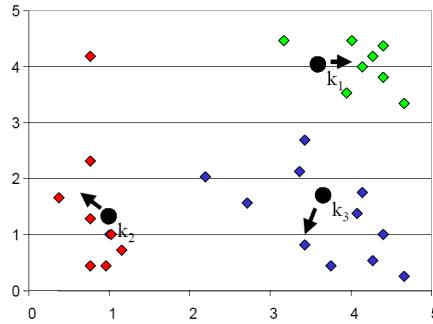
$f: \langle \text{Outlook}, \text{Humidity}, \text{Wind}, \text{Temp} \rangle \rightarrow \text{PlayTennis?}$



Unsupervised Learning

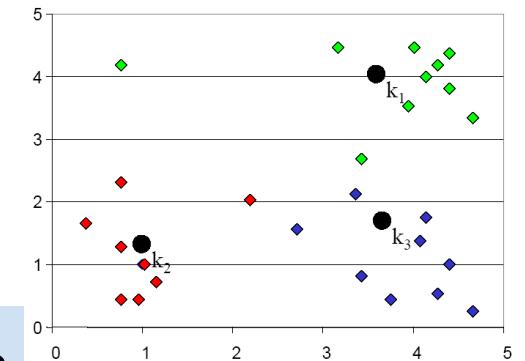
- Clustering
 - Hierarchical clustering
 - K-means clustering: non-probabilistic approach
 - Mixture model: probabilistic interpretation of K-means
- Dimensionality reduction
 - Why useful?
 - Principal component analysis

K-Means Clustering Algorithm



Find the cluster means

$$\vec{\mu}_k = \frac{1}{C_k} \sum_{i \in C_k} \vec{x}_i$$

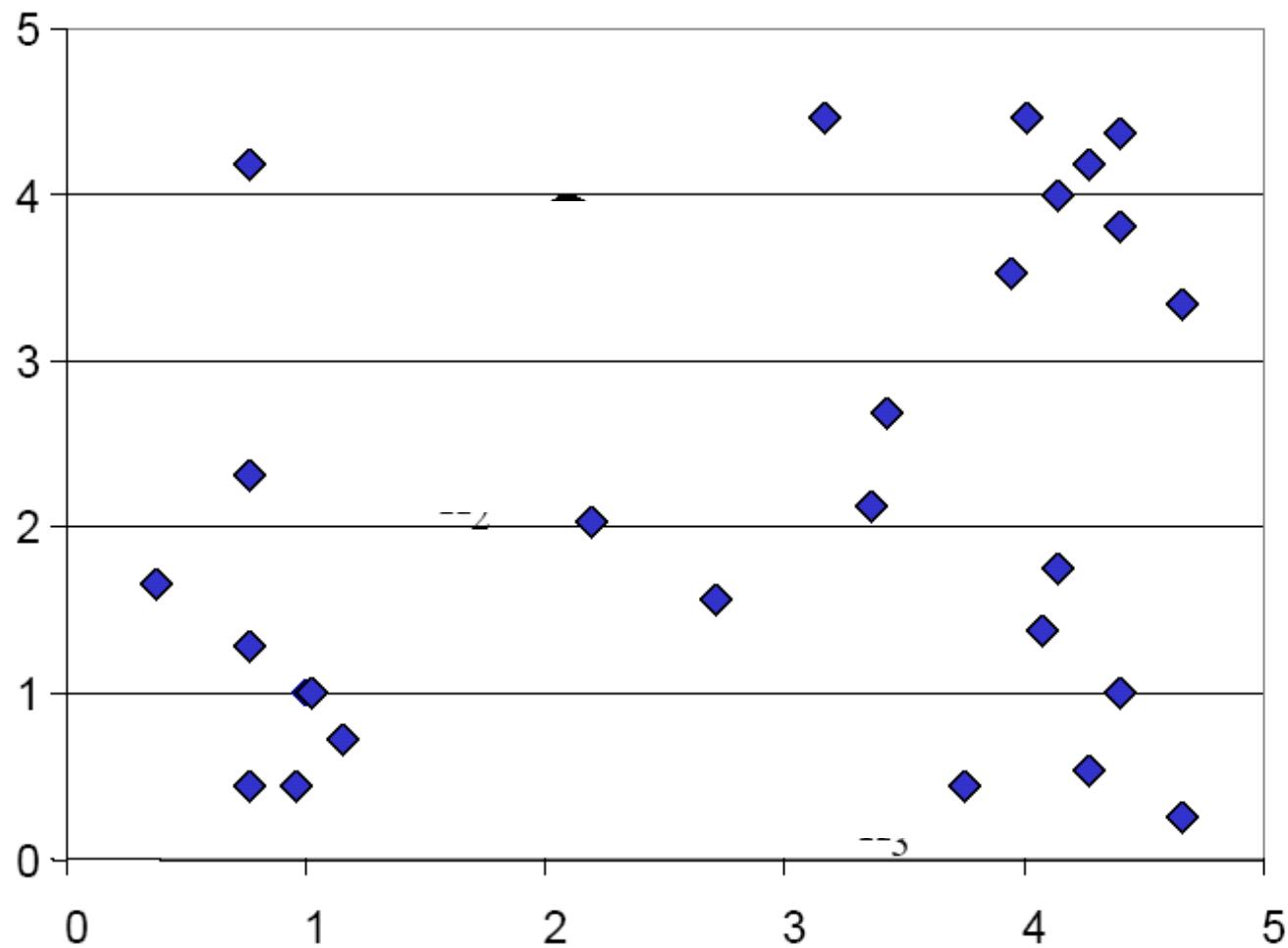


Re-assign samples x_i 's to clusters

$$\arg \max_k \|x_i - \mu_k\|_2^2$$

Iterate until convergence

Mixture Model: Probability Model for Data $P(X)$?



Mixture Model

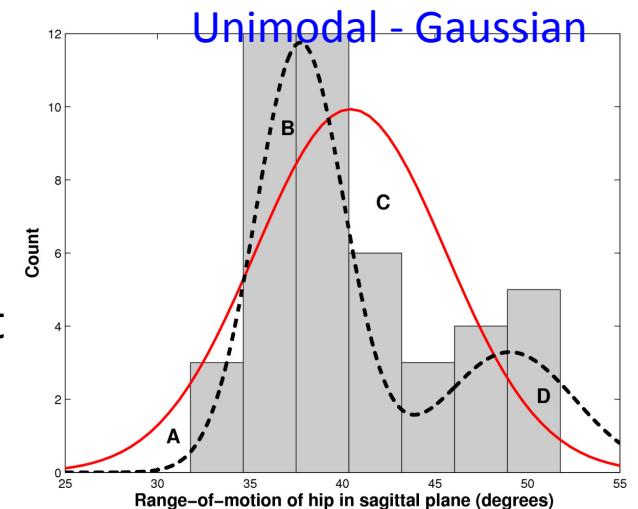
- A density model $\mathbf{p}(\mathbf{x})$ may be multi-modal

$$\begin{aligned} p(x_n) &= \sum_k p(x_n, z_n = k) p(z_n = k) \\ &= \sum_k N(x_n | \mu_k, \Sigma_k) \pi_k \end{aligned}$$

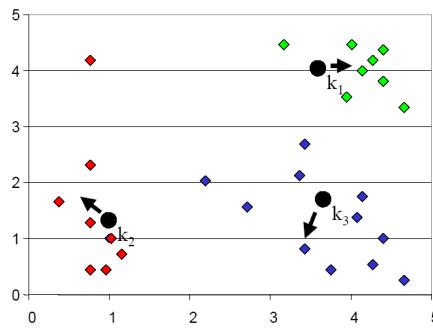
↑
mixture proportion ↑
mixture component

- EM algorithm
 - Maximize expected complete data log-likelihood (Expectation is taken with respect $P(Y|X, \theta)$)
 - E-step and M-step
 - Issues in convergence

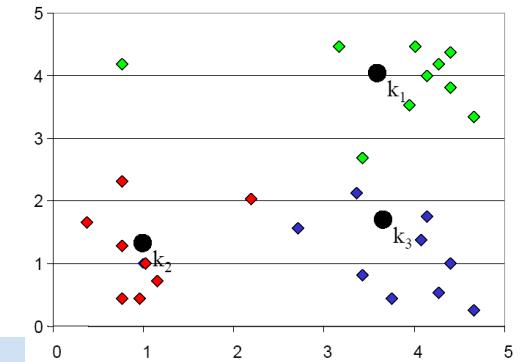
Multi-modal: how do we model this?



EM Algorithm



Maximization (M)-step:
- Find mixture parameters



Expectation (E)-step:
- Re-assign samples x_i 's to clusters
- Impute the unobserved values z_i

Iterate until convergence

Computing the Components

- Projection of vector \mathbf{x} onto an axis (dimension) \mathbf{u} is $\mathbf{u}^T \mathbf{x}$
- Assume \mathbf{X} is a normalized $n \times p$ data matrix for n samples and p features. Direction of greatest variability is that in which the average square of the projection is greatest:

$$\text{Maximize } (1/n) \mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u}$$

$$\text{s.t. } \mathbf{u}^T \mathbf{u} = 1$$

$$\text{Construct Langrangian } (1/n) \mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u} - \lambda \mathbf{u}^T \mathbf{u}$$

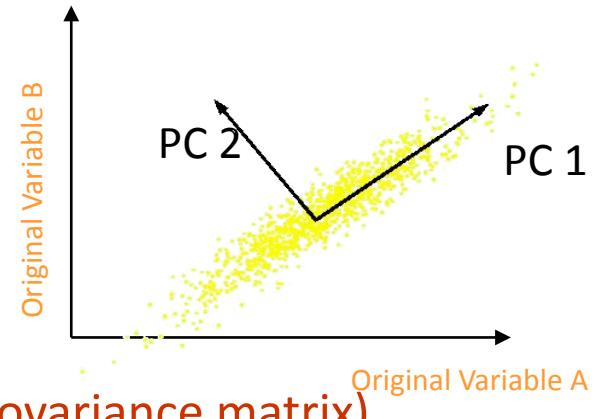
Vector of partial derivatives set to zero

$$1/n \mathbf{X}^T \mathbf{X} \mathbf{u} - \lambda \mathbf{u} = 0$$

$$\text{or equivalently } \mathbf{S} \mathbf{u} - \lambda \mathbf{u} = 0 \quad (\mathbf{S} = 1/n \mathbf{X}^T \mathbf{X}: \text{covariance matrix})$$

As $\mathbf{u} \neq \mathbf{0}$ then \mathbf{u} must be an eigenvector of \mathbf{S} with eigenvalue λ

- λ is the **principal eigenvalue** of the **covariance matrix \mathbf{S}**
- The eigenvalue denotes the **amount of variability** captured along that dimension
- **How many principal components?**



Semi-supervised Learning

- Improving naïve Bayes classifier with unlabeled data
- EM algorithm
 - Why EM?
 - How to derive it?

Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

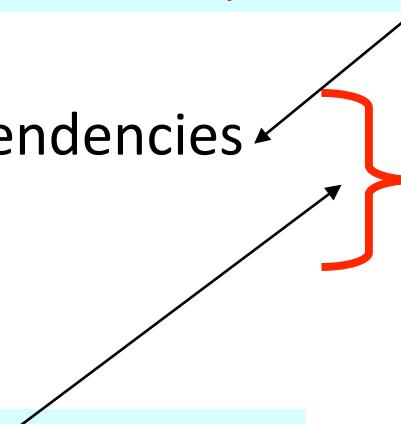
- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i | Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

$Pa(X)$ = immediate parents of X in the graph

Constructing a Bayesian network

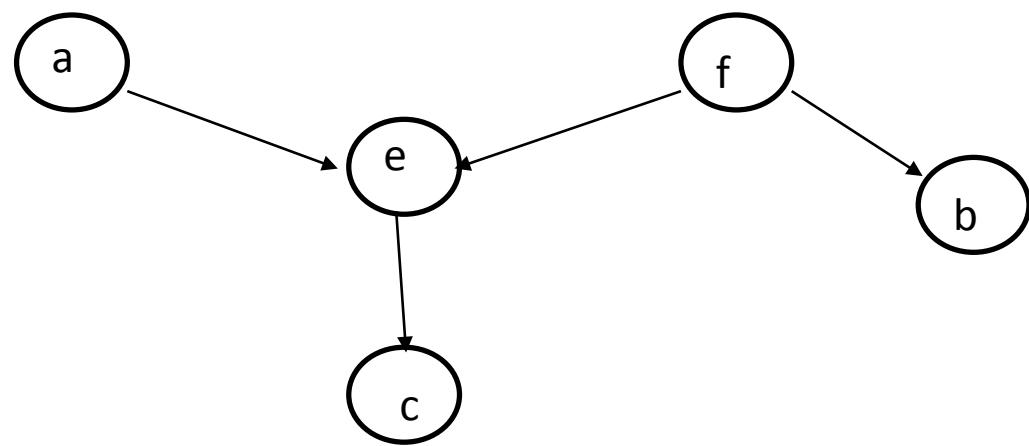
- How do we go about constructing a network for a specific problem?
Can reduce the number of parameters! Why?
- Step 1: Identify the random variables
- Step 2: Determine the conditional dependencies
- Step 3: Populate the CPTs



Conditional independencies in Bayesian networks

- Markov blanket: All parent, children and co-parents of children
- D-separation: v-structure, non v-structure

Markov Blanket, D-separation

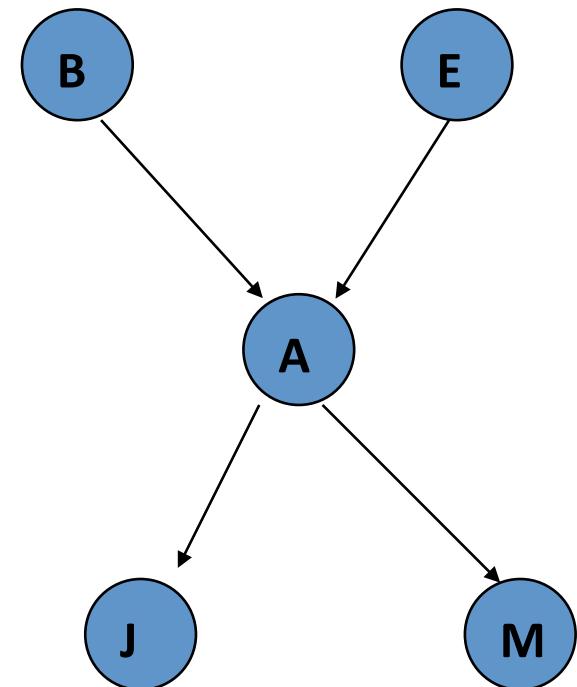


$a \perp b \mid c ?$

$a \perp b \mid f ?$

Inference/Learning in Bayesian Networks

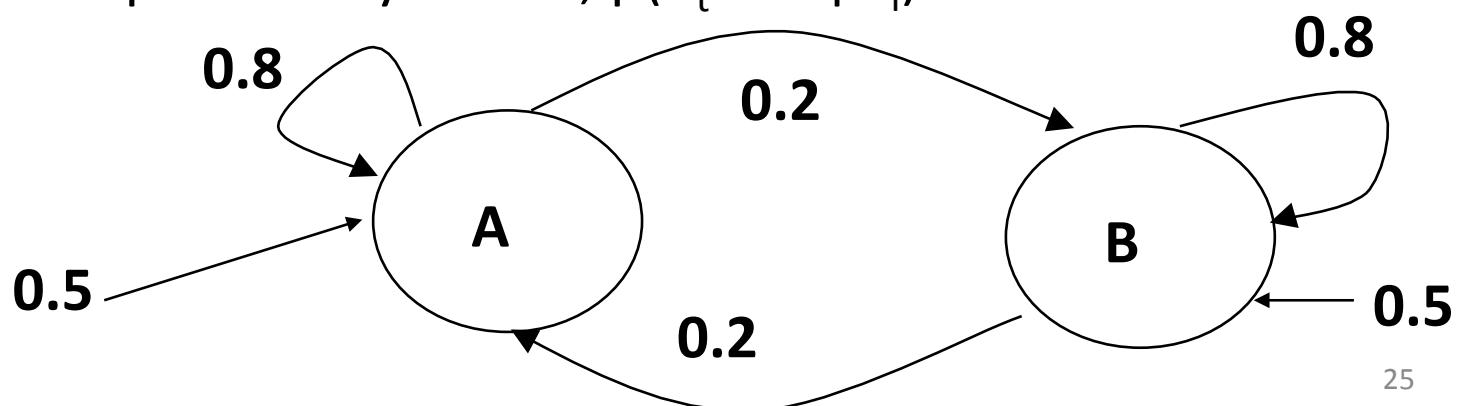
- Once the network is constructed, we can use algorithms for inferring the values of unobserved variables.
- For example, in our previous network the only observed variables are the phone call and the radio announcement. However, what we are really interested in is whether there was a burglary or not.
- How can we determine that?
 - Enumeration
 - Variable elimination
 - Stochastic inference
- Learning parameters given network structure: MLE, MAP



B – Did a burglary occur?
E – Did an earthquake occur?
A – Did the alarm go off?
M – Mary calls
J – John calls

A Hidden Markov model

- A set of states $\{s_1 \dots s_n\}$
 - In each time point we are in exactly one of these states denoted by q_t
- A set of possible outputs Σ
 - At time t we emit a symbol $\sigma \in \Sigma$
- Π_i , the probability that we *start* at state s_i
- A transition probability model, $P(q_t = s_i \mid q_{t-1} = s_j)$
- An emission probability model, $p(o_t = \sigma \mid s_i)$

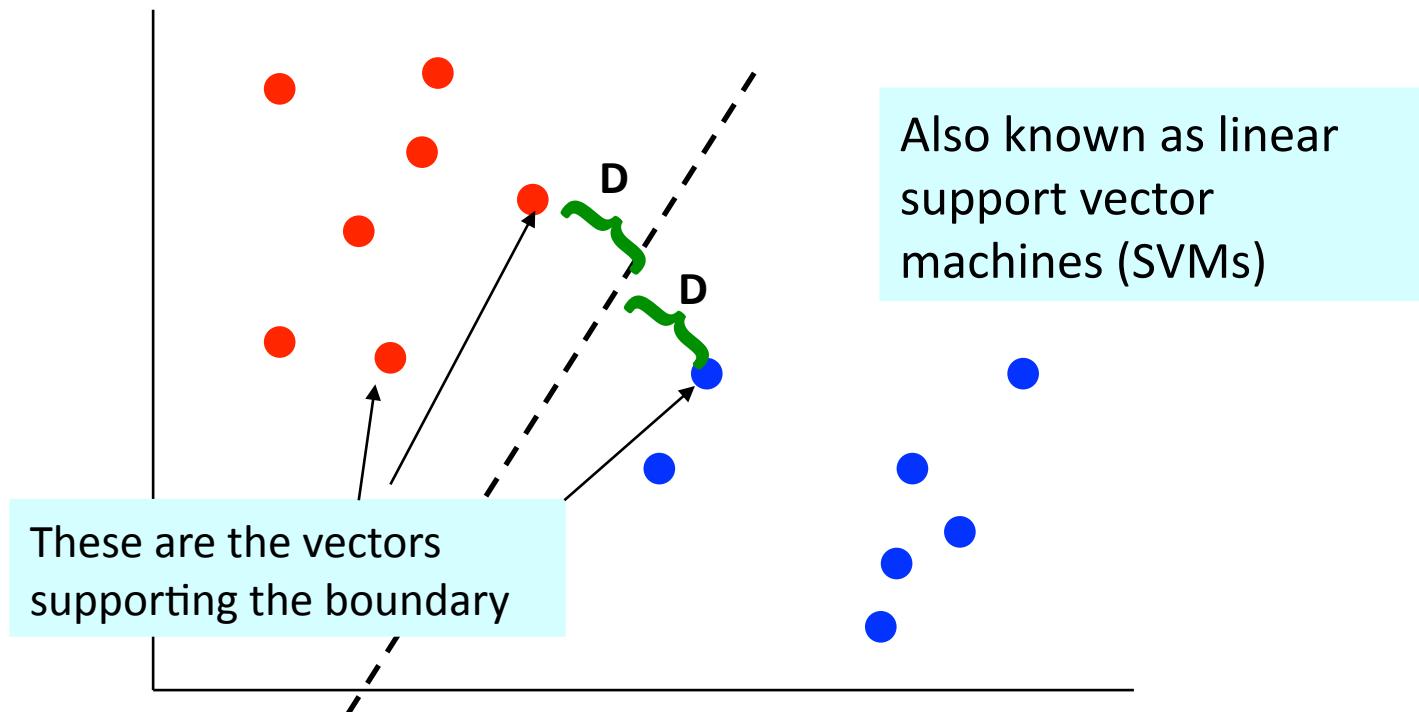


Inference/Learning in HMMs

- Computing $P(Q)$ and $P(q_t = s_i)$
 - If we cannot look at observations
- Computing $P(Q | O)$ and $P(q_t = s_i | O)$
 - Forward-backward algorithm
- Computing $\text{argmax}_Q P(Q | O)$
 - When we care about the entire path
 - Viterbi algorithm
- Learning with EM algorithm
 - Why?
 - Inference as a subroutine in E step

Support Vector Machine as Max Margin Classifiers

- Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from points on both sides



Optimization Problem for Support Vector Machine

Two optimization problems: For the separable and non separable cases

$$\min_w \frac{w^T w}{2}$$

For all x in class +1

$$w^T x + b \geq 1$$

For all x in class -1

$$w^T x + b \leq -1$$

$$\min_w \frac{w^T w}{2} + \sum_{i=1}^n C \varepsilon_i$$

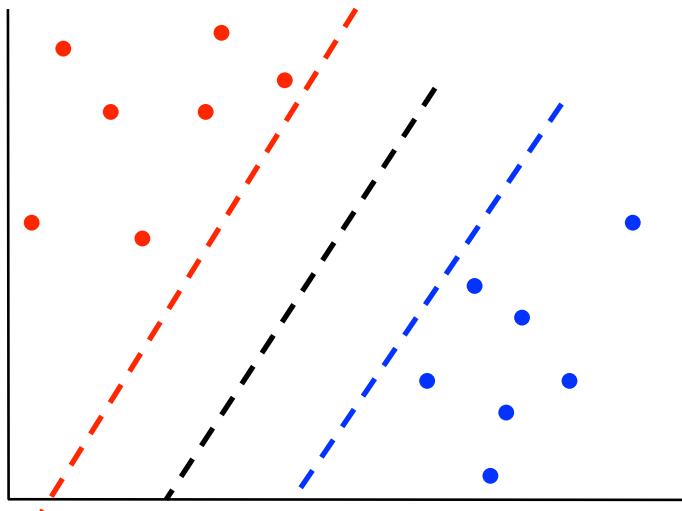
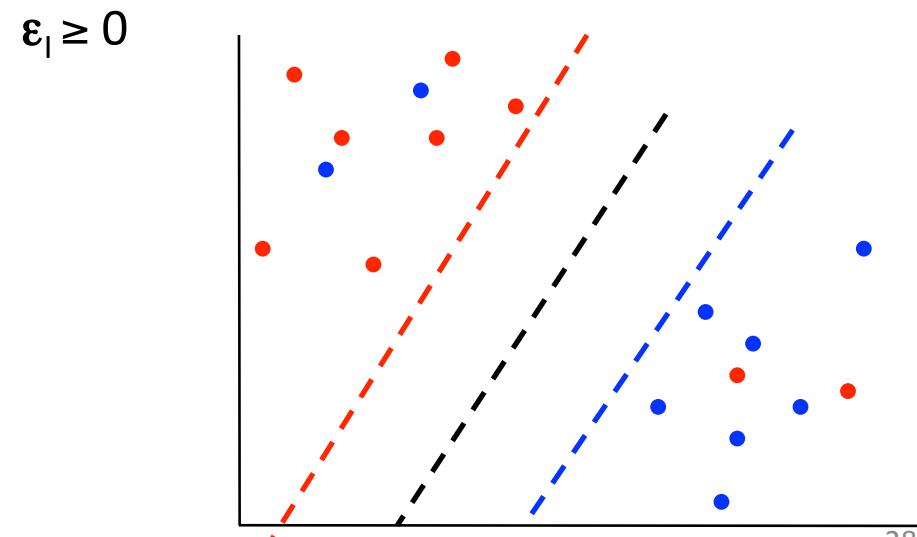
For all x_i in class +1

$$w^T x + b \geq 1 - \varepsilon_i$$

For all x_i in class -1

$$w^T x + b \leq -1 + \varepsilon_i$$

For all i



Dual SVM for linearly separable case

Our dual target function: $\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \mathbf{x}_j$

$$\sum_i \alpha_i y_i = 0$$

Dot product for all training samples

$$\alpha_i \geq 0 \quad \forall i$$

Dot product with training samples

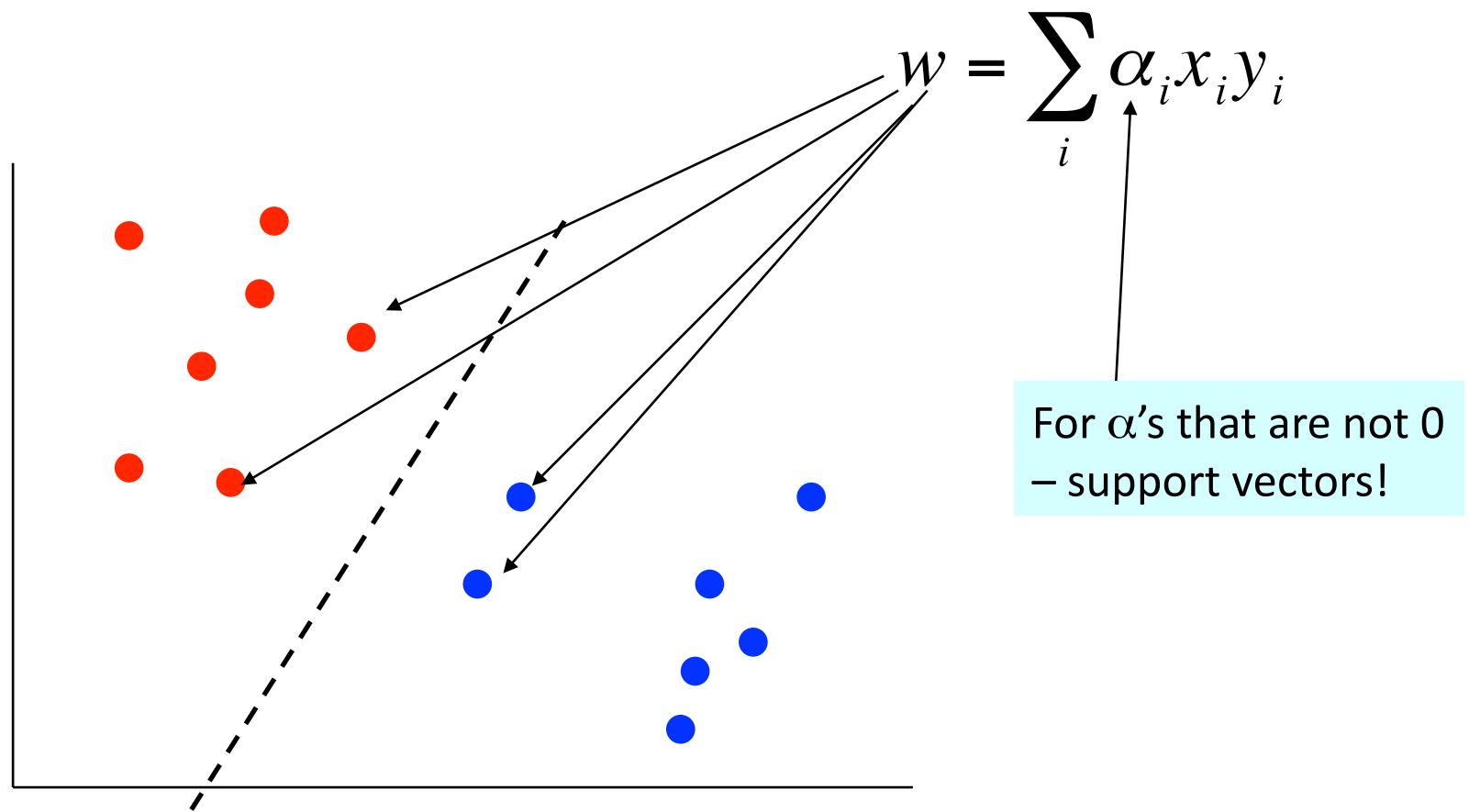
To evaluate a new sample \mathbf{x}_j we need to compute:

$$\mathbf{w}^T \mathbf{x}_j + b = \sum_i \alpha_i y_i \mathbf{x}_i \mathbf{x}_j + b$$

Is this too much computational work (for example when using transformation of the data)?

How to apply kernel trick? ²⁹

Dual SVM - interpretation



Regularized Regression

- Recall linear regression: $\mathbf{y} = \mathbf{X}^T \beta + \varepsilon$

$$\begin{aligned}\beta^* &= \arg \max_{\beta} (\mathbf{y} - \mathbf{X}^T \beta)^T (\mathbf{y} - \mathbf{X}^T \beta) \\ &= \arg \max_{\beta} \|\mathbf{y} - \mathbf{X}^T \beta\|^2\end{aligned}$$

- Regularized LR:

- L2-regularized LR:

$$\beta^* = \arg \max_{\beta} \|\mathbf{y} - \mathbf{X}^T \beta\|^2 + \lambda \|\beta\|$$

where

$$\|\beta\| = \sum_i \beta_i^2$$

- L1-regularized LR:

$$\beta^* = \arg \max_{\beta} \|\mathbf{y} - \mathbf{X}^T \beta\|^2 + \lambda |\beta|$$

where

$$|\beta| = \sum_i |\beta_i|$$

Performs a model selection directly

