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Basics on Probability

Conditional probability
Independence, conditional independence
Bayes’ rule, prior, likelihood, posterior probability

Chain rule



Probability Estimation

Density estimation P(Y,X) P(Y|X) and its relation to classification

For any given probability model, one can estimate the model
parameters O given data D with maximum likelihood or MAP
estimations

m MLE: Choose 6 that maximizes the probability of
observed data:

~

0 = arg moax P(D|0)

d

INP(D|0) =0

= arg m@ax In P(D | 0) df

m MAP: use most likely parameter:

0 = arg max P(0| D)



Naive Bayes Classifier

« Training and testing based on Bayes rule

« Conditional independence in Naive Bayes classifier
P(X1...Xp|Y) = HP(XZ-|Y)

Y, for all i
— Why is it important?

.e., that X; and X are Condzitionally iIndependent given

* Nalve Bayes
— Training using MLE, MAP estimates

— How to handle discrete and continuous (Gaussian) input
features



Naive Bayes Algorithm — discrete X.

* Train Naive Bayes (given data for X and Y)
for each” value y,
estimate 7. = P(Y = yi)
for each” value x;; of each attribute X;
estimate 0, = P(X; = z5|Y = y;,)

« Classify (X"e)
Y —argmax P(Y = yi) [ [ POXTIY = yp)

1

YW  arg max 7 | ] 0ijk

" probabilities must sum to 1, so need estimate only n-1 of these...



Logistic Regression

1
14+ exp(wg + >, w; X;)

P(lY =1|X =< Xq,..Xp >) =
implies

exp(wo + 25 wiX;)

P(Y = 0|X =< Xq,..Xn>) =
| " 14+ exp(wg + X, w; X;)

implies
P(Y = 0|X)
= exp(wg + > w; X;) o
P = 11%) 2N
implies P(Y = 0X) ) b
N — = wWQ —+ Z ’wiXZ'
P(Y = 1/X) i ™~ linear classification

rulel



Training Logistic Regression: Maximizing
Conditional Log Likelihood

1

P(Y =0[|X, W) = 1+ exp(wg + >; w; X;)

exp(wg + X>; w; X;)
1+ exp(wg + >; w; X;)

P(Y =1|X,W) =

(W) = In[[PxLw)
[

= Y Vi(wo + Y w; X — In(1 + exp(wg + Y w; X))
z i i

Good news: [(W) is concave function of W
Bad news: no closed-form solution to maximize [(W)
Gradient descent!



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X 2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)
e Assume some functional form for P(X|Y), P(X) (i.e., P(X,Y))

e Estimate parameters of P(X]|Y), P(X) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

- Find @ = argmax , M, Pr(y, x| 0)
- Different assumptions about generative process for the
data: Pr(X,Y), priors on 0,...

Discriminative classifiers (e.g., Logistic regression)
e Assume some functional form for P(Y|X)
e Estimate parameters of P(Y|X) directly from training data

- Find @ = argmax , M, Pr(y;|x,,0)
- Different assumptions about conditional probability:
Pr(Y|X), priorson 6, ...




Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X 2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)
e Assume some functional form for P(X|Y), P(X) (i.e., P(X,Y))

e Estimate parameters of P(X]|Y), P(X) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

What are the advantages/
disadvantages of the two
Discriminat LYPES of clqssifiers?

e Assume some functional form for P(Y|X)
e Estimate parameters of P(Y|X) directly from training data

s for the

- Find @ = argmax , M, Pr(y;|x,,0)
- Different assumptions about conditional probability:
Pr(Y|X), priorson 6, ...




Perceptron

* Another linear but non-probabilistic classifier
 Margin-based learning

[Rosenblatt, 1957]

A
instance x, Compute: y; = sign(v, . X; )

A- B y
) 1

N
V. X
y. \

! -1

If mistake: v,,., =V, + y;X;
 What happens if data are separable or non-separable?
* Voted perceptron



Linear Regression

 Learn P(Y|X) whenY is continuous

yzf(CI?)—I-E where ENN(O,O')

* MLE: How to find one, what it is, computational challenges

 MAP estimate: ridge regression, lasso, regularization



Multilayer Networks ot Sigmoid Units

1
1+ exp(wg + X; wix;)
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- non-linear decision boundary

- M(C)LE training
- Non-convex optimization
- back-propagation 12
- Avoiding overfitting with early stopping



Other non-linear classifiers

e Decision tree learning f. <outlook, Humidity, Wind, Temp> = PlayTennis?
— What decision trees are

— How to learn them

Sunny Overcast Rain

* information gain

— How to prune them to avoid Humidity Yes
overfitting
High Normal Strong Weak
. . / \ / \
* Nearest neighbor learning No pes No ves

— No training!

— At test time, for each test
sample, find k-nearest
neighbors and classify as

frequent labels among
neighbors

13



Unsupervised Learning

e Clustering
— Hierarchical clustering
— K-means clustering: non-probabilistic approach
— Mixture model: probabilistic interpretation of K-means

 Dimensionality reduction
— Why useful?
— Principal component analysis



K-Means Clustering Algorithm

Find the cluster Re-as|5|gn ’
means samples x/'s to
clusters

, 1 ,
Mk:azﬂﬁi

2
= argmax, Il x, — u, I

Iterate until
convergence




Mixture Model: Probability Model for Data

P(X)?
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Mixture Model

* A density model p(x) may be multi-modal

p(x,) = D, p(x,.2, = k)p(z, = k)

= EkN(x’l W 2 )7, Multi-model: how do we model this?
L\ k’_\ 2 —Ur !m d
mixture proportion mixture component '," \
* EM algorithm i / i
— Maximize expected complete data log- ; / ‘
likelihood (Expectation is taken with respect - / | N-
P(lel e) ol ’:" ‘\, ‘/'/ \~D<\ ]
— E-step and M-step / N

30 35 40 45 50
Range-of-motion of hip in sagittal plane (degrees)

— Issues in convergence

17



EM Algorithm
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T Expectatico)n (E)-;te]c):
Maximization (M)-step: eresin e

parameters - Impute the
unobserved values z,

Iterate until
convergence



Computing the Components

* Projection of vector x onto an axis (dimension) u is u™

* Assume X is a normalized nxp data matrix for n samples and p features. Direction of
greatest variability is that in which the average square of the projection is greatest:

A

Maximize (1/n) u™X"Xu

5.t uu=1
PC}\/ PC 1
Construct Langrangian (1/n) u™X™u —AuTu

Vector of partial derivatives set to zero
1/n X Xu—Au =0 e
or equivalently Su —Au =0 (S =1/n X"X: covariance matrix)

v

As u # 0 then u must be an eigenvector of S with eigenvalue A

— Ais the principal eigenvalue of the covariance matrix S
— The eigenvalue denotes the amount of variability captured along that dimension

« How many principal components?

19



Semi-supervised Learning

* Improving naive Bayes classifier with unlabeled data

 EM algorithm
— Why EM?
— How to derive it?



Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a
collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional
probability distributions (CPD’s)

* Each node denotes a random variable

 Edges denote dependencies

* For each node X its CPD defines P(X. | Pa(X;))

* The joint distribution over all variables is defined to be

P(Xq1...Xp) = H P(X;|Pa(X;))

Pa(X) = immediate parents of X in the graph



Constructing a Bayesian network

* How do we go about constructing a network for a specific

problem? Can reduce the number of parameters! Why?
e Step 1: Identify the random variables

e Step 2: Determine the conditional dependencies
e Step 3: Populate the CPTs

Can be learned from observation data!

Conditional independencies in Bayesian networks
- Markov blanket: All parent, children and co-parents of children
- D-separation: v-structure, non v-structure



Markov Blanket, D-separation

@\ O ®\@ alblc?

(& albl f?



Inference/Learning in Bayesian Networks

Once the network is constructed, we can use
algorithms for inferring the values of
unobserved variables.

For example, in our previous network the
only observed variables are the phone call
and the radio announcement. However, what
we are really interested in is whether there
was a burglary or not.

How can we determine that?
1. Enumeration

2. Variable elimination

3. Stochastic inference

Learning parameters given network structure:

MLE, MAP

Y

¢

B — Did a burglary occur?

E — Did an earthquake occur?
A — Did the alarm go off?
M — Mary calls

J—=John calls “



A Hidden Markov model

A set of states {s, ... s, }

- In each time point we are in exactly one of these states
denoted by g,

A set of possible outputs 2
- At time t we emit a symbol ocEX

I1, the probability that we start at state s
A transition probability model, P(q, =s; | 9., =s))
An emission probability model, p(o,= 0 | s,)

0.8<\ 0.2

05—
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0.8

“— 0.5



Inference/Learning in HMMs

Computing P(Q) and P(q, = s;)

- If we cannot look at observations
Computing P(Q | O) and P(q, =s,|0)
- Forward-backward algorithm
Computing argmax,P(Q | O)

- When we care about the entire path
- Viterbi algorithm

Learning with EM algorithm
— Why?
— Inference as a subroutine in E step



Support Vector Machine as Max Margin
Classifiers

e Instead of fitting all points, focus on boundary points

e Learn a boundary that leads to the largest margin from points on both sides

O ® ’
/ .
® / Also known as linear
D // support vector
O ‘\y .
b machines (SVMs)
/

These are the vectors ® ®

supporting the boundary °

/

| /
/
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Optimization Problem for Support Vector Machine

Two optimization problems: For the separable and non separable cases

T
W W

min,
Forall xinclass+1
wix+b =1

For all xinclass -1

wix+b < -1

2 <
For all x;inclass +1

O W'W g
min +EC8i
i=1

For all x;inclass -1

wix+b < -1+¢,

For all i
€=0 /
°
) ° /
e/ /
) () / / /
o / / /
/ / /
/ /
) ° / // )
/ / /o
/ /
/ °
/ / / o
/ / / 'Y
/ / o [ )
/ ,/ / o
/ / /
Vi . / ®
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Dual SVM for linearly separable case

. . 1
Our dual target function: max Eai —Ezalajyi)’j?j

1,]

l
Ea_y_ =0 Dot product for all
lJ 1 o« o
l. training samples
a, =0 Vi Dot product with training
samples

To evaluate a new sample x; we /
need to compute:

T
WX "‘b:Eai}’iXin +b
i

Is this too much computational work (for example
when using transformation of the data)?

How to apply kernel trick?



Dual SVM - interpretation

For s that are not 0
— support vectors!

30



Regularized Regression

Recall linear regression: T
8 y=X f+¢

p =argmax,(y -X'p) (y - X' )
=argmax lly - X' B1IP

Regularized LR:
— L2-regularized LR:

where

p =argmax, lly - X' BIF +A 1l Bl
gl = B’

— L1-regularized,LR:

where

p =argmax, lly - X' BIF +A 1]

1BI= Y181

Performs a model selection directly




