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Computa2onal	
  Learning	
  Theory	
   	
  

•  What	
  general	
  laws	
  constrain	
  inducGve	
  learning?	
  

•  Want	
  theory	
  to	
  relate	
  
– Number	
  of	
  training	
  examples	
  

– Complexity	
  of	
  hypothesis	
  space	
  
– Accuracy	
  to	
  which	
  target	
  funcGon	
  is	
  approximated	
  

– Manner	
  in	
  which	
  training	
  examples	
  are	
  presented	
  

– Probability	
  of	
  successful	
  learning	
  

*	
  See	
  annual	
  Conference	
  on	
  ComputaGonal	
  Learning	
  Theory	
  



Sample	
  Complexity	
  

How	
  many	
  training	
  examples	
  suffice	
  to	
  learn	
  target	
  concept	
  

1.  If	
  some	
  random	
  process	
  (e.g.,	
  nature)	
  proposes	
  instances,	
  
and	
  teacher	
  labels	
  them?	
  
	
  -­‐	
  instances	
  drawn	
  according	
  to	
  P(X) 

2.  If	
  learner	
  proposes	
  instances	
  as	
  queries	
  to	
  teacher?	
  
	
  	
  -­‐	
  learner	
  proposes	
  x,	
  teacher	
  provides	
  f(x)	
  

3.  If	
  teacher	
  (who	
  knows	
  f(x))	
  proposes	
  training	
  examples?	
  
	
  -­‐	
  teacher	
  proposes	
  sequence	
  {<x1,	
  f(x1)>,	
  …	
  <xn,	
  f(xn)>	
  

AcGve	
  learning	
  



Learning	
  Theory	
  

•  In	
  general,	
  we	
  are	
  interested	
  in	
  
–  Sample	
  complexity:	
  How	
  many	
  training	
  examples	
  are	
  needed	
  for	
  a	
  

learner	
  to	
  converge	
  to	
  a	
  successful	
  hypothesis?	
  

–  ComputaGonal	
  complexity:	
  How	
  much	
  computaGonal	
  effort	
  is	
  needed	
  
for	
  a	
  learner	
  to	
  converge	
  to	
  a	
  successful	
  hypothesis?	
  	
  

–  The	
  two	
  are	
  related.	
  Why?	
  



Problem	
  Se8ng	
  for	
  Learning	
  from	
  Data	
  

Given:	
  

•  Set	
  of	
  instances	
  X	
  =	
  {x1, …, xn}	
  for	
  n	
  input	
  features	
  
•  Sequence	
  of	
  input	
  instances	
  drawn	
  at	
  random	
  from	
  	
  	
  

•  Set	
  of	
  hypotheses	
  	
  
•  Set	
  of	
  possible	
  target	
  funcGons	
  	
  
•  teacher	
  provides	
  noise-­‐free	
  label	
  

Learner	
  observes	
  a	
  sequence	
  D	
  of	
  training	
  examples	
  of	
  the	
  form	
  
<x, c(x)>	
  for	
  some	
  target	
  concept	
  

•  Instances	
  x	
  are	
  drawn	
  from	
  P(X)	
  
•  Teacher	
  provides	
  target	
  value	
  c(x)	
  

€ 

c ∈C



Problem	
  Se8ng	
  for	
  Learning	
  from	
  Data	
  

Goal:	
  Then,	
  learner	
  must	
  output	
  a	
  hypothesis	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  esGmaGng	
  c	
  
such	
  that	
  

h	
  is	
  evaluated	
  on	
  subsequent	
  instances	
  drawn	
  from	
  P(X)	
  

Randomly	
  drawn	
  instances,	
  noise-­‐free	
  classificaGon	
  



Func2on	
  Approxima2on	
  with	
  Training	
  Data	
  

•  Given	
  X	
  =	
  {x:	
  x	
  is	
  boolean	
  and	
  x={x1,	
  …,	
  xn}	
  }	
  with	
  n	
  input	
  
features	
  

•  How	
  many	
  possible	
  input	
  values?	
  |X|	
  =	
  2n	
  

•  How	
  many	
  possible	
  label	
  assignments?	
  	
  

•  The	
  size	
  of	
  hypothesis	
  space	
  that	
  can	
  represent	
  all	
  possible	
  
label	
  assignments?	
  	
  |H|=	
   € 

22
n

€ 

22
n

In	
  order	
  to	
  find	
  h	
  that	
  is	
  idenGcal	
  to	
  c,	
  we	
  need	
  observaGons	
  for	
  all	
  data	
  |X|	
  =	
  2n	
  	
  
	
   In	
  pracGce,	
  we	
  are	
  limited	
  by	
  training	
  data!	
  
Need	
  to	
  introduce	
  inducGve	
  bias	
  



The	
  true	
  error	
  of	
  h	
  is	
  the	
  probability	
  that	
  it	
  will	
  	
  
misclassify	
  an	
  example	
  drawn	
  at	
  random	
  from	
  



D

instances	


drawn at random from 	



Probability 
distribution P(X) 

training 
examples D 



Overfi8ng	
  

Consider	
  a	
  hypothesis	
  h	
  and	
  its	
  

•  Error	
  rate	
  over	
  training	
  data:	
  
•  True	
  error	
  rate	
  over	
  all	
  data:	
  	
  

We	
  say	
  h	
  overfits	
  the	
  training	
  data	
  if	
  

Amount	
  of	
  overfigng	
  =	
  	
  



Overfi8ng	
  

Consider	
  a	
  hypothesis	
  h	
  and	
  its	
  

•  Error	
  rate	
  over	
  training	
  data:	
  
•  True	
  error	
  rate	
  over	
  all	
  data:	
  	
  

We	
  say	
  h	
  overfits	
  the	
  training	
  data	
  if	
  

Amount	
  of	
  overfigng	
  =	
  	
  

Can we bound                     

  in terms of                     ??  



Probability 
distribution P(x) 

training 
examples 

if	
  D	
  was	
  a	
  set	
  of	
  examples	
  drawn	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  independent	
  of	
  h,	
  then	
  we	
  
could	
  use	
  standard	
  staGsGcal	
  confidence	
  intervals	
  to	
  determine	
  that	
  with	
  95%	
  
probability,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  lies	
  in	
  the	
  interval:	
  	
  

but	
  D	
  is	
  the	
  training	
  data	
  for	
  h	
  ….	
  



c: X ! {0,1} 







Any(!) learner 
that outputs 
a hypothesis 
consistent 
with all 
training 
examples (i.e., 
an h 
contained in 
VSH,D) 



Proof:	
  

•  Given,	
  hypothesis	
  space	
  H,	
  input	
  space	
  X,	
  m	
  labeled	
  examples,	
  	
  
target	
  funcGon	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  error	
  tolerance	
  ε	
  	
  

•  Let	
  h1,	
  h2,	
  …,	
  hK	
  be	
  hypotheses	
  with	
  true	
  error	
  >	
  ε.	
  Then,	
  	
  	
  	
  	
  

	
  	
  	
   Probability	
  that	
  h1	
  will	
  be	
  consistent	
  with	
  first	
  training	
  example	
  ≤	
  (1-­‐	
  ε)	
  
	
  	
  	
  	
   	
  

	
  	
   Probability	
  that	
  h1	
  will	
  be	
  consistent	
  with	
  m	
  independently	
  drawn	
  training	
  
examples	
  ≤	
  (1-­‐	
  ε)m	
  

	
   Probability	
  that	
  at	
  least	
  one	
  of	
  h1,	
  h2,	
  …,	
  hK	
  (K	
  bad	
  hypotheses)	
  will	
  be	
  
consistent	
  with	
  m	
  examples	
  ≤	
  K(1-­‐	
  ε)m	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  ≤	
  |H|(1-­‐	
  ε)m	
   	
   	
   since	
  K≤|H|	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  ≤|H|e-­‐εm	
  	
   	
   since	
  for	
  0	
  ≤	
  ε	
  ≤	
  1,	
  (1-­‐	
  ε)	
  ≤	
  e-­‐εm	
  



What	
  it	
  means	
  

[Haussler,	
  1988]:	
  probability	
  that	
  the	
  version	
  space	
  is	
  not	
  ε-­‐exhausted	
  aper	
  m	
  
training	
  examples	
  is	
  at	
  most	
  	
  

1.	
  How	
  many	
  training	
  examples	
  suffice?	



Suppose	
  we	
  want	
  this	
  probability	
  to	
  be	
  at	
  most	
  δ	





E.g., 

X=< X1, X2, ... Xn > 

Each h ∈ H constrains 
each Xi to be 1, 0, or 
“don’t care” 

In other words, each h 
is a rule such as: 

If X2=0 and X5=1 

Then Y=1, else Y=0 





Example:	
  Simple	
  decision	
  trees	
  

Consider	
  Boolean	
  classificaGon	
  problem	
  

•  instances:	
  X = <X1 … XN>	
  where	
  each	
  Xi	
  is	
  boolean	
  
•  Each	
  hypothesis	
  in	
  H	
  is	
  a	
  decision	
  tree	
  of	
  depth	
  1 

How	
  many	
  training	
  examples	
  m	
  suffice	
  to	
  assure	
  
that	
  with	
  probability	
  at	
  least	
  0.99,	
  any	
  consistent	
  
learner	
  using	
  H	
  will	
  output	
  a	
  hypothesis	
  with	
  true	
  
error	
  at	
  most	
  0.05?	
  



Example:	
  Simple	
  decision	
  trees	
  

Consider	
  Boolean	
  classificaGon	
  problem	
  

•  instances:	
  X = <X1 … Xn>	
  where	
  each	
  Xi	
  is	
  boolean	
  
•  Each	
  hypothesis	
  in	
  H	
  is	
  a	
  decision	
  tree	
  of	
  depth	
  1 

How	
  many	
  training	
  examples	
  m	
  suffice	
  to	
  assure	
  
that	
  with	
  probability	
  at	
  least	
  0.99,	
  any	
  consistent	
  
learner	
  using	
  H	
  will	
  output	
  a	
  hypothesis	
  with	
  true	
  
error	
  at	
  most	
  0.05?	
  

|H|	
  =	
  4	
  n,	
  	
  	
  epsilon	
  =	
  0.05,	
  	
  delta	
  =	
  0.01	
  

€ 

m ≥
1
0.05

(ln(4N) + ln 1
0.01

)

N=4	
   	
   	
   m≥148	
  
N=10	
   	
   m≥166	
  
N=100	
   	
   m≥212	
  



Example:	
  H	
  is	
  Decision	
  Tree	
  with	
  depth=2	
  

Consider	
  classificaGon	
  problem	
  f:X!Y:	
  

•  instances:	
  X = <X1 … XN>	
  where	
  each	
  Xi	
  is	
  boolean	
  
•  learned	
  hypotheses	
  are	
  decision	
  trees	
  of	
  depth	
  2,	
  using	
  only	
  

two	
  variables 

How	
  many	
  training	
  examples	
  m	
  suffice	
  to	
  assure	
  that	
  with	
  probability	
  
at	
  least	
  0.99,	
  any	
  consistent	
  learner	
  will	
  output	
  a	
  hypothesis	
  with	
  true	
  	
  
error	
  at	
  most	
  0.05?	
  



Example:	
  H	
  is	
  Decision	
  Tree	
  with	
  depth=2	
  

Consider	
  classificaGon	
  problem	
  f:X!Y:	
  

•  instances:	
  X = <X1 … XN>	
  where	
  each	
  Xi	
  is	
  boolean	
  
•  learned	
  hypotheses	
  are	
  decision	
  trees	
  of	
  depth	
  2,	
  using	
  only	
  

two	
  variables 

How	
  many	
  training	
  examples	
  m	
  suffice	
  to	
  assure	
  that	
  with	
  probability	
  
at	
  least	
  0.99,	
  any	
  consistent	
  learner	
  will	
  output	
  a	
  hypothesis	
  with	
  true	
  	
  
error	
  at	
  most	
  0.05?	
  

|H|	
  =	
  N(N-­‐1)/2	
  x	
  16	
  	
  

€ 

m ≥
1
0.05

(ln(8N 2 − 8N) + ln 1
0.01

)

N=4	
   	
   	
   m≥184	
  
N=10	
   	
   m≥224	
  
N=100	
   	
   m≥318	
  





Sufficient condition:  

Holds if learner L 
requires only a 
polynomial number of 
training examples, and 
processing per 
example is polynomial 



Here ε is the difference between the training error and true error 
of the output hypothesis (the one with lowest training error) 



Addi2ve	
  Hoeffding	
  Bounds	
  –	
  Agnos2c	
  Learning	
  
•  Given	
  m	
  independent	
  flips	
  of	
  a	
  coin	
  with	
  true	
  Pr(heads)	
  =	
  θ	



	
   we	
  can	
  bound	
  the	
  error	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  maximum	
  likelihood	
  esGmate	
  

•  Relevance	
  to	
  agnosGc	
  learning:	
  for	
  any	
  single	
  hypothesis	
  h	
  

•  But	
  we	
  must	
  consider	
  all	
  hypotheses	
  in	
  H	
  

•  Now	
  we	
  assume	
  this	
  probability	
  is	
  bounded	
  by	
  δ.	
  Then,	
  we	
  have	
  

€ 

m >
1
ε 2
(ln |H |+ln(1/δ))



Ques2on:	
  If	
  H	
  =	
  {h	
  |	
  h:	
  X	
  !	
  Y}	
  is	
  infinite,	
  what	
  
measure	
  of	
  complexity	
  should	
  we	
  use	
  in	
  place	
  of	
  

|H|	
  ?	
  



Ques2on:	
  If	
  H	
  =	
  {h	
  |	
  h:	
  X	
  !	
  Y}	
  is	
  infinite,	
  what	
  
measure	
  of	
  complexity	
  should	
  we	
  use	
  in	
  place	
  of	
  

|H|	
  ?	
  

Answer:	
  The	
  largest	
  subset	
  of	
  X	
  for	
  which	
  H	
  can	
  guarantee	
  zero	
  
training	
  error	
  (regardless	
  of	
  the	
  target	
  funcGon	
  c)	
  



Ques2on:	
  If	
  H	
  =	
  {h	
  |	
  h:	
  X	
  !	
  Y}	
  is	
  infinite,	
  what	
  
measure	
  of	
  complexity	
  should	
  we	
  use	
  in	
  place	
  of	
  

|H|	
  ?	
  

Answer:	
  The	
  largest	
  subset	
  of	
  X	
  for	
  which	
  H	
  can	
  guarantee	
  zero	
  
training	
  error	
  (regardless	
  of	
  the	
  target	
  funcGon	
  c)	
  

VC	
  dimension	
  of	
  H	
  is	
  the	
  size	
  of	
  this	
  subset	
  



a labeling of each 
member of S as 
positive or negativea 

Each ellipse corresponds to a 
possible dichotomy 
Positive: Inside the ellipse 

Negative: Outside the ellipse 



VC(H)=3	





Compare	
  to	
  our	
  earlier	
  results	
  based	
  on	
  |H|:	
  

How	
  many	
  randomly	
  drawn	
  examples	
  suffice	
  to	
  ε-­‐exhaust	
  VSH,D	
  with	
  probability	
  at	
  
least	
  (1-­‐δ)?	
  	
  

ie.,	
  to	
  guarantee	
  that	
  any	
  hypothesis	
  that	
  perfectly	
  fits	
  the	
  training	
  data	
  is	
  probably	
  
(1-­‐δ)	
  approximately	
  (ε)	
  correct	
  

Sample	
  Complexity	
  based	
  on	
  VC	
  dimension	
  



VC	
  dimension:	
  examples	
  

Consider	
  1-­‐dim	
  real	
  valued	
  input	
  X, want	
  to	
  learn	
  c:X!{0,1} 
What	
  is	
  VC	
  dimension	
  of	
  
•  Open	
  intervals: 

•  Closed	
  intervals:  

x 



VC	
  dimension:	
  examples	
  

Consider	
  1-­‐dim	
  real	
  valued	
  input	
  X, want	
  to	
  learn	
  c:X!{0,1} 
What	
  is	
  VC	
  dimension	
  of	
  
•  Open	
  intervals: 

•  Closed	
  intervals:  

x 

VC(H1)=1	
  

VC(H2)=2	
  

VC(H3)=2	
  

VC(H4)=3	
  



VC	
  dimension:	
  examples	
  

What	
  is	
  VC	
  dimension	
  of	
  lines	
  in	
  a	
  plane?	
  

•  H2 = { ((w0 + w1x1 + w2x2)>0  !  y=1) } 



VC	
  dimension:	
  examples	
  

What	
  is	
  VC	
  dimension	
  of	
  

•  H2 = { ((w0 + w1x1 + w2x2)>0  !  y=1) } 
– VC(H2)=3 

•  For Hn = linear separating hyperplanes in n dimensions, 
VC(Hn)=n+1 



For	
  any	
  finite	
  hypothesis	
  space	
  H,	
  can	
  you	
  
give	
  an	
  upper	
  bound	
  on	
  VC(H)	
  in	
  terms	
  of	
  |H|?	
  

(hint:	
  yes)	
  

Assume	
  VC(H)	
  =	
  K,	
  which	
  means	
  H	
  can	
  shayer	
  K	
  examples.	
  

For	
  K	
  examples,	
  there	
  are	
  2K	
  possible	
  labelings.	
  Thus,	
  |H|≥	
  2K	
  

Thus,	
  K	
  ≤	
  log2	
  |H|	
  



More	
  VC	
  Dimension	
  Examples	
  to	
  Think	
  About	
  

•  LogisGc	
  regression	
  over	
  n	
  conGnuous	
  features	
  
–  Over	
  n	
  boolean	
  features?	
  

•  Linear	
  SVM	
  over	
  n	
  conGnuous	
  features	
  

•  Decision	
  trees	
  defined	
  over	
  n	
  boolean	
  features	
  
F:	
  <X1, ... Xn>	
  !	
  Y	



•  How	
  about	
  1-­‐nearest	
  neighbor?	
  



How tight is this bound?	



How many examples m suffice to assure that any hypothesis that fits the training data 
perfectly is probably (1-δ) approximately (ε) correct?	



Tightness	
  of	
  Bounds	
  on	
  Sample	
  Complexity	
  



How tight is this bound?	



How many examples m suffice to assure that any hypothesis that fits the training data 
perfectly is probably (1-δ) approximately (ε) correct?	



Tightness	
  of	
  Bounds	
  on	
  Sample	
  Complexity	
  

Lower bound on sample complexity (Ehrenfeucht et al., 1989):	



Consider any class C of concepts such that VC(C) > 1, any learner L, any 0 < ε < 1/8, 
and any 0 < δ < 0.01.  Then there exists a distribution and a target concept in C, such 
that if L observes fewer examples than 	



Then with probability at least δ, L outputs a hypothesis with 	





Agnos2c	
  Learning:	
  VC	
  Bounds	
  for	
  Decision	
  Tree	
  

With	
  probability	
  at	
  least	
  (1-­‐δ)	
  every	
  h ∈ H	
  saGsfies	
  

[Schölkopf	
  and	
  Smola,	
  2002]	
  



What	
  You	
  Should	
  Know	
  

•  Sample	
  complexity	
  varies	
  with	
  the	
  learning	
  segng	
  
–  Learner	
  acGvely	
  queries	
  trainer	
  
–  Examples	
  arrive	
  at	
  random	
  

•  Within	
  the	
  PAC	
  learning	
  segng,	
  we	
  can	
  bound	
  the	
  probability	
  that	
  learner	
  will	
  
output	
  hypothesis	
  with	
  given	
  error	
  
–  For	
  ANY	
  consistent	
  learner	
  (case	
  where	
  c	
  ∈	
  H)	
  
–  For	
  ANY	
  “best	
  fit”	
  hypothesis	
  (agnosGc	
  learning,	
  where	
  perhaps	
  c	
  not	
  in	
  H)	
  

•  VC	
  dimension	
  as	
  a	
  measure	
  of	
  complexity	
  of	
  H	
  

•  Conference	
  on	
  Learning	
  Theory:	
  hyp://www.learningtheory.org	
  
•  Avrim	
  Blum’s	
  course	
  on	
  Machine	
  Learning	
  Theory:	
  

–  hyps://www.cs.cmu.edu/~avrim/ML14/	
  


