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Computational Learning Theory

 What general laws constrain inductive learning?
 Want theory to relate
— Number of training examples
— Complexity of hypothesis space
— Accuracy to which target function is approximated
— Manner in which training examples are presented

— Probability of successful learning

* See annual Conference on Computational Learning Theory



Sample Complexity

How many training examples suffice to learn target concept

1. If some random process (e.g., nature) proposes instances,
and teacher labels them?

- instances drawn according to P(X)

2. If learner proposes instances as queries to teacher?

- learner proposes x, teacher provides f(x) Active learning

3. If teacher (who knows f(x)) proposes training examples?

- teacher proposes sequence {<x?, f(x})>, ... <x", f(x")>



Learning Theory

* In general, we are interested in

— Sample complexity: How many training examples are needed for a
learner to converge to a successful hypothesis?

— Computational complexity: How much computational effort is needed
for a learner to converge to a successful hypothesis?

— The two are related. Why?



Problem Setting for Learning from Data

Given:

Set of instances X ={x,, ..., x,} for n input features
Sequence of input instances drawn at random from P (X))

Set of hypotheses  H = {h: X — {0,1}}

Set of possible target functions (' = {c: X — {0,1}}
teacher provides noise-free label ¢(x)

Learner observes a sequence D of training examples of the form

<x, c(x)> for some target concept c €C
Instances x are drawn from P(X)
Teacher provides target value c(x)



Problem Setting for Learning from Data

Goal: Then, learner must output a hypothesis h € H estimating c
such that

h = argmin errory.qi,(h)
heH

h is evaluated on subsequent instances drawn from P(X)

Randomly drawn instances, noise-free classification



Function Approximation with Training Data

Given X = {x: x is boolean and x={x, ..., X,} } with n input
features

How many possible input values? |X]| = 2"
How many possible label assignments? 2%

The size of hypothesis space that can represent all possible
label assignments? |H|= 27
In order to find h that is identical to ¢, we need observations for all data | X| = 2"

In practice, we are limited by training data!
Need to introduce inductive bias



True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

The true error of h is the probability that it will
misclassify an example drawn at random from P (.X)

Pr _[h(z) # c(z)

erroriye(h) e



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # ¢(x) over training instances D

ETTOT train = xfe)ll‘)[h:c # c(x)] = |D| Z |D| c(z))

: : training
True error of hypothesis h with respect to c examples D
e How often h(x) # c(x) over future instances
drawn at random from D
errorygwe(h) = Pr [h(x) # c(x)] Probability

z~P(X) < distribution P(X)




Overfitting
Consider a hypothesis # and its

* Error rate over training data:  €TTOTtrqin(h)
* True error rate over all data:  erroryye(h)

We say /1 overfits the training data if

erroryue(h) > erroryqin(h)
Amount of overtfitting =

erroryye(h) — erroryqin(h)



Overfitting
Consider a hypothesis # and its

* Error rate over training data: errortmz-n(h)
* True error rate over all data:  errory.ye(h)

We say /1 overfits the training data if

erroryue(h) > erroryqin(h)

Amount of overfitting =  errori ye (h) —_ eTTOTtmz-n(h)

Can we bound errori,.(h)

in terms of erroryqin(h) ??



ETTOT train = wfe’ll*)[h(:z:) # c(x)] = ﬁ Z 5(h(xf5é| (z))

training

examples

erroryw.(h) = Pr |h(x c(x
rue() = S M7) 7 ()] Probability
T ——— | distribution P(x)

if D was a set of examples drawn from P(X) and independent of /1, then we
could use standard statistical confidence intervals to determine that with 95%
probability, erfrofrtme(h) lies in the interval:

errorp(h) (1 — errorp(h) )

n

errorp(h) £ 1.96

but D is the training data for h....




Version Spaces

c: X > {0,1}

A hypothesis h is consistent with a seE/o/

training examples D of target concept ¢ if and
only if h(z) = ¢(x) for each training example
(z,c(x)) in D.

Consistent(h,D) = (Y(x,c(z)) € D) h(z) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSup={h € H|Consistent(h,D)}



Exhausting the Version Space

Hypothesis space H

N -~
error=.2

r=4

L]
error=.1

.
5 . error=.2
error=.3 r=.3

r=.1

(r = training error, error = true error)

Definition: The version space V Sy p with respect
to training data D is said to be e-exhausted if every
hypothesis A in V. Sy p has true error less than e.

(Vh € VS p) erroryye(h) < €




How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than

|H|e—67n



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not

e-exhausted (with respect to ¢) is less than Any(!) learner
|H|e™™ that outputs

a hypothesis
Interesting! This bounds the probability that any consistent

consistent learner will output a hypothesis h with W'Th .a”
training

error(h) > € :
examples (i.e.,
an h
contained in

VSy,5)




Proof:

Given, hypothesis space H, input space X, m labeled examples,
target function C' = {c: X — {0,1}}, error tolerance ¢

Let h,, h,, ..., h be hypotheses with true error > €. Then,
Probability that h, will be consistent with first training example < (1- €)

Probability that h, will be consistent with m independently drawn training
examples < (1- g)™m

Probability that at least one of h,, h,, ..., h, (K bad hypotheses) will be
consistent with m examples < K(1- )™

< [H[(1-€)m since K<|H]
<|HJe*m since for0<e<1, (1-¢€) < etm



What it means

[Haussler, 1988]: probability that the version space is not e-exhausted after m
training examples is at most |H|e™ <"

T

Suppose we want this probability to be at most 0
Pr[(3h € H)s.t.(errorirgin(h) = 0)A(erroryye(h) > ¢€)] < |Hle™ ™

1. How many training examples suffice?

m > ~(In|H| + In(1/5))



Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 — J) that

every h in V Sy p satisfies errorp(h) < e

Use our theorem:
1

Suppose H contains conjunctions of constraints on

up to n boolean attributes (i.e., n boolean literals).

Eg..
X=< X1, X2, .. Xn>

Each h € H constrains
each Xitobe 1,0, or

“"don't care”

In other words, each h
is a rule such as:

If X2=0 and X5=1
Then Y=1, else Y=0




Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 — d) that

every h in V Sy p satisfies errorp(h) < e

Use our theorem:
1
m > ;(hllHI +In(1/0))

Suppose H contains conjunctions of constraints on

up to n boolean attributes (i.e., n boolean literals).
Then |H| = 3", and

p—t

m > —(In 3" + In(1/9))

m

or

p—t

m > —(nln3 +1n(1/9))

m



Example: Simple decision trees m > %(ln |H| + In(1/6))

Consider Boolean classification problem

* instances: X = <X, ... X,» where each X is boolean
* Each hypothesis in H is a decision tree of depth 1

How many training examples m suffice to assure
that with probability at least 0.99, any consistent
learner using H will output a hypothesis with true
error at most 0.05?



Example: Simple decision trees m > %(ln |H| + In(1/6))

Consider Boolean classification problem

* instances: X = <X, ... X >where each X, is boolean
* Each hypothesis in H is a decision tree of depth 1

How many training examples m suffice to assure
that with probability at least 0.99, any consistent
learner using H will output a hypothesis with true
error at most 0.05?

|H| =4 n, epsilon=0.05, delta=0.01

I 1

= (In(4N) + In——

mz s InEN) + o)
N=4 m>148
N=10 m>166

N=100 m=212



Example: H is Decision Tree with depth=2

Consider classification problem f:X-2Y:
* instances: X = <X, ... X;,» where each X, is boolean

* |earned hypotheses are decision trees of depth 2, using only
two variables

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true
error at most 0.05?



Example: H is Decision Tree with depth=2

Consider classification problem f:X-2Y:
* instances: X = <X, ... X;,» where each X, is boolean

* |earned hypotheses are decision trees of depth 2, using only
two variables

How many training examples m suffice to assure that with probability
at least 0.99, any consistent learner will output a hypothesis with true
error at most 0.05?

|H| = N(N-1)/2 x 16
1 1
m=——~1n(8N* -8N) +In—)
0.05 0.01

N=4 m=184
N=10 m2224
N=100 m=318

m > %(m H| + In(1/6))



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and ¢ such that
0<d<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/6, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using | Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if learner L

such that 0 < € < 1/2, and ¢ such that requires only a
0<d<1/2, polynomial number of
learner L will with probability at least (1 ~ ) ;:igggisg?;ﬁles' and
output a hypothesis h € H such that example is polynomial

errorp(h) < €, in time that is polynomial in
1/e, 1/6, n and size(c).




Agnostic Learning

So far, assumed ¢ € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?
1
ﬁ

/

(In |H| +1In(1/6))

Here ¢ is the difference between the training error and true error
of the output hypothesis (the one with lowest training error)




Additive Hoeffding Bounds — Agnostic Learning

Given m independent flips of a coin with true Pr(heads) = 6

N

we can bound the error € in the maximum likelihood estimate @

Pr[o > 0 4+ e] < e_2m€2

Relevance to agnostic learning: for any single hypothesis h

2
Prlerrorirue(h) > errorypqin(h) + €] < e~ 2me

But we must consider all hypotheses in H

Pr[(3h € H)errorygye(h) > errorirqin(h)+e] < ‘H‘e—szQ

Now we assume this probability is bounded by 6. Then, we have

m >i2(1n|H | +1n(1/9))
E



m > 2(In |H| +In(1/5))

Question: If H = {h | h: X 2 Y} is infinite, what
measure of complexity should we use in place of
|H| ?



m > 2(In |H| +In(1/5))

Question: If H = {h | h: X 2 Y} is infinite, what
measure of complexity should we use in place of
|H| ?

Answer: The largest subset of X for which H can guarantee zero
training error (regardless of the target function c)



m > 2(In |H| +In(1/5))

Question: If H = {h | h: X 2 Y} is infinite, what
measure of complexity should we use in place of
|H| ?

Answer: The largest subset of X for which H can guarantee zero
training error (regardless of the target function c)

VC dimension of H is the size of this subset



Shattering a Set of Instances

a labeling of each
member of S as

Definition: a dichotomy of a set S is a positive or negativea

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X

/
/

Each ellipse corresponds to a
possible dichotomy

Positive: Inside the ellipse

Negative: Outside the ellipse




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




Sample Complexity based on VC dimension

How many randomly drawn examples suffice to g-exhaust VS, , with probability at
least (1-9)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably
(1-0) approximately (&) correct

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

Compare to our earlier results based on |H|:

m > l(In(l/cS) + In|H|)



VC dimension: examples

Consider 1-dim real valued input X, want to learn c:X—=>{0,1}
What is VC dimension of *,

O O
o o

* Open intervals:
H1l: if £ > a then y =1 else y

H2: if x > a then y =1 else

O
O
or, if x > a then y = 0 else 1

e

 (Closed intervals:
H3: ifa<x<btheny=1¢else y=20

H4: ifa<x<btheny=1else y=20
or, i fa<zx<btheny=0e¢elsey=1



VC dimension: examples

Consider 1-dim real valued input X, want to learn c:X—=>{0,1}
What is VC dimension of *,

O O
o o

* Open intervals:

Hl: ifx >atheny=1¢else y=0 VC(H1)=1
H2: if  >a theny=1¢else y =0 VC(H2)=2
or, ifx>atheny=0¢lsey=1

 (Closed intervals:
H3: ifa<xz<btheny=1e¢else y=0 VCH3)=2

H4: ifa<x<bthen y=1else y=0 VC(H4)=3
or, i fa<zx<btheny=0e¢elsey=1



VC dimension: examples

What is VC dimension of lines in a plane?
* Hy={((wy+wx; +wyx,)>0 2> y=1) }

T



VC dimension: examples

What is VC dimension of
* H,={((Wy+wWXx; +W,x,)>0 2 y=1) }
— VC(H,)=3

* For H_ = linear separating hyperplanes in n dimensions,
VC(H,)=n+1



For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H|?
(hint: yes)

Assume VC(H) = K, which means H can shatter K examples.
For K examples, there are 2X possible labelings. Thus, |H|> 2K

Thus, K< log, |H|



More VC Dimension Examples to Think About

Logistic regression over n continuous features

— Qver n boolean features?
Linear SVM over n continuous features

Decision trees defined over n boolean features
F:<X,, .. X>2Y

How about 1-nearest neighbor?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data
perfectly is probably (1-0) approximately (€) correct?

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

How tight is this bound?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data
perfectly is probably (1-0) approximately (€) correct?

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any 0 < € < 1/8,
and any 0 < 0 <0.01. Then there exists a distribution and a target concept in C, such
that if L observes fewer examples than

Ve o) -1
32¢

1
max |—1og(1/§),
€

Then with probability at least 8, L outputs a hypothesis with errorp( h) > €



Agnostic Learning: VC Bounds for Decision Tree
[Scholkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)(IN 80y + 1) +In§

m

errorirye(h) < errory.qin(h)—+ J

09
0.85 |+
08 [
075 |
07}
0.65 H

0.6

0.55

0.5 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100



What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples arrive at random

Within the PAC learning setting, we can bound the probability that learner will
output hypothesis with given error
— For ANY consistent learner (case where ¢ € H)

— For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

VC dimension as a measure of complexity of H

Conference on Learning Theory: http://www.learningtheory.org

Avrim Blum’s course on Machine Learning Theory:
— https://www.cs.cmu.edu/~avrim/ML14/




