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Simple	
  Learners	
  

•  Simple	
  (a.k.a.	
  weak)	
  learners	
  are	
  good	
  
–  e.g.,	
  naïve	
  Bayes,	
  logisIc	
  regression,	
  decision	
  stumps	
  (or	
  shallow	
  

decision	
  trees)	
  

–  don’t	
  usually	
  overfit	
  

•  Simple	
  (a.k.a.	
  weak)	
  learners	
  are	
  bad	
  
–  can’t	
  solve	
  hard	
  learning	
  problems	
  

•  Can	
  we	
  make	
  weak	
  learners	
  always	
  good???	
  
–  No!!!	
  
–  But	
  oPen	
  yes…	
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Vo$ng	
  	
  (Ensemble	
  Methods)	
  

•  Instead of learning a single (weak) classifier, learn many 
weak classifiers that are good at different parts of the 
input space 

•  Output class: (Weighted) vote of each classifier 
– Classifiers that are most “sure” will vote with more 

conviction 
– Classifiers will be most “sure” about a particular part of the 

space 
– On average, do better than single classifier! 

•  But how do you ???  
–  force classifiers to learn about different parts of the input 

space? 
– weight the votes of different classifiers? 3	
  



Boos$ng	
  [Schapire,	
  1989]	
  

•  Idea: given a weak learner, run it multiple times on (reweighted) training data, 
then let the learned classifiers vote 

•  On each iteration t:  
–  weight each training example by how incorrectly it was classified 
–  Learn a hypothesis – ht 
–  A strength for this hypothesis – αt  

•  Final classifier: 
      -  A linear combination of the votes of the different classifiers weighted by their 

strength 

•  Practically useful 
•  Theoretically interesting 

H(X) = sign(Σαtht(X))	
  



Learning	
  from	
  weighted	
  data	
  

•  Sometimes not all data points are equal 
–  Some data points are more equal than others 

•  Consider a weighted dataset 
–  D(i) – weight of i th training example (xi,yi) 
–  Interpretations: 

•  i th training example counts as D(i) examples 
•  If I were to “resample” data, I would get more samples of 

“heavier” data points 

•  Now, in all calculations, whenever used, i th training example 
counts as D(i) “examples” 
–  e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted 

count 
5	
  



Learning	
  From	
  Weighted	
  Data	
  

•  Consider	
  	
  a	
  	
  weighted	
  	
  dataset	
  	
  	
  
–  D(i)	
  	
  –	
  	
  weight	
  	
  of	
  	
  i	
  	
  th	
  	
  training	
  	
  example	
  	
  (xi,yi)	
  	
  

–  Interpretatons:	
  	
  	
  
•  ith	
  	
  training	
  	
  example	
  	
  counts	
  	
  as	
  	
  D(i)	
  	
  examples	
  	
  	
  

•  If	
  	
  I	
  	
  were	
  	
  to	
  	
  “resample”	
  	
  data,	
  	
  I	
  	
  would	
  	
  get	
  	
  more	
  	
  samples	
  	
  of	
  	
  
“heavier”	
  	
  	
  data	
  	
  points	
  	
  	
  

•  Now,	
  	
  in	
  	
  all	
  	
  calculaIons,	
  	
  whenever	
  	
  used,	
  	
  ith	
  	
  training	
  	
  
example	
  	
  counts	
  	
  as	
  	
  D(i)	
  	
  “examples”	
  
–	
  	
  e.g.,	
  	
  in	
  	
  MLE	
  	
  redefine	
  	
  Count(Y=y)	
  	
  to	
  	
  be	
  	
  weighted	
  	
  count	
  	
  	
  

	
  	
  	
  	
  	
  Unweighted	
  	
  data	
  	
  	
  	
  	
  	
  	
  	
   	
   Weights	
  	
  D(i)	
  

	
  	
  	
  	
  	
  Count(Y=y)	
  	
  =	
  	
  ∑	
  	
  I(Yi=y)	
  	
  	
  	
  	
  	
  	
  	
  Count(Y=y)	
  	
  =	
  	
  ∑	
  	
  D(i)I(Yi=y)	
  
i=1	
  

m	
  

i=1	
  

m	
  



Boos$ng	
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weak	
  

weak	
  	
  

Why?	
  

IniIally	
  equal	
  weights	
  

Naïve	
  Bayes,	
  decision	
  stump	
  

Weights	
  for	
  all	
  samples	
  
should	
  sum	
  to	
  1	
  
Σ	
  Dt+1(i)=1	
  i	
  



9	
  

weak	
  

weak	
  	
  

Why?	
  

IniIally	
  equal	
  weights	
  

Naïve	
  Bayes,	
  decision	
  stump	
  

Increase	
  weight	
  	
  
if	
  wrong	
  on	
  sample	
  i	
  



What	
  αt	
  to	
  choose	
  for	
  hypothesis	
  ht?	
  

•  Weight	
  update	
  rule:	
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[Schapire,	
  1989]	
  

[Freund & Schapire ’97]	
  

Weighted	
  training	
  error	
  
εt	
  =	
  0	
  if	
  ht	
  perfectly	
  classifies	
  all	
  weighted	
  data	
  pts	
  	
  
εt	
  =	
  1	
  if	
  ht	
  perfectly	
  wrong	
  =>	
  -­‐ht	
  perfectly	
  right	
  	
  
εt	
  =	
  0.5	
  

αt	
  =	
  ∞	
  	
  
αt	
  =	
  -­‐∞	
  
αt	
  =	
  0	
  



Boos$ng	
  Example	
  (Decision	
  Stump)	
  



Boos$ng	
  Example	
  



Boos$ng:	
  Experimental	
  Results	
  

Comparison	
  of	
  C4.5,	
  BoosIng	
  C4.5,	
  BoosIng	
  decision	
  stumps	
  
(depth	
  1	
  trees),	
  27	
  benchmark	
  datasets	
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[Freund	
  &	
  Schapire,	
  1996]	
  

error	
  error	
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r	
  



Analyzing	
  Training	
  Error	
  

•  Training	
  error	
  of	
  final	
  classifier	
  is	
  bounded	
  by:	
  

	
  	
  	
  	
  where	
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Convex	
  
upper	
  
bound	
  



Analyzing	
  Training	
  Error	
  

•  Training	
  error	
  of	
  final	
  classifier	
  is	
  bounded	
  by:	
  

	
  	
  	
  	
  where	
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Analyzing	
  Training	
  Error	
  

•  Training	
  error	
  of	
  final	
  classifier	
  is	
  bounded	
  by:	
  

	
  	
  	
  	
  where	
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Analyzing	
  Training	
  Error	
  

•  Training	
  error	
  of	
  final	
  classifier	
  is	
  bounded	
  by:	
  

	
  	
  	
  	
  where	
  	
  

If	
  Zt	
  <	
  1,	
  training	
  error	
  decreases	
  exponen5ally	
  (even	
  though	
  
weak	
  learners	
  may	
  not	
  be	
  good	
  εt	
  ~0.5)	
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Analyzing	
  Training	
  Error	
  

•  Training	
  error	
  of	
  final	
  classifier	
  is	
  bounded	
  by:	
  

	
  	
  	
  	
  where	
  	
  

If	
  we	
  minimize	
  ∏t	
  Zt,	
  we	
  minimize	
  our	
  training	
  error	
  

We	
  can	
  Ighten	
  this	
  bound	
  greedily,	
  by	
  choosing	
  αt	
  and	
  ht	
  on	
  
each	
  iteraIon	
  to	
  minimize	
  Zt. 
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What	
  αt	
  to	
  choose	
  for	
  hypothesis	
  ht?	
  

We can minimize this bound by choosing αt on each iteration to minimize Zt. 

For	
  	
  boolean	
  	
  target	
  	
  funcIon,	
  	
  this	
  	
  is	
  	
  accomplished	
  	
  by	
  	
  [Freund	
  	
  &	
  	
  Schapire	
  	
  ’97]: 

Proof:	
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[Schapire,	
  1989]	
  



What	
  αt	
  to	
  choose	
  for	
  hypothesis	
  ht?	
  

We can minimize this bound by choosing αt on each iteration to minimize Zt. 

For	
  	
  boolean	
  	
  target	
  	
  funcIon,	
  	
  this	
  	
  is	
  	
  accomplished	
  	
  by	
  	
  [Freund	
  	
  &	
  	
  Schapire	
  	
  ’97]: 

Proof:	
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[Schapire,	
  1989]	
  



Strong,	
  weak	
  classifiers	
  

•  Training	
  error	
  of	
  the	
  final	
  classifier	
  is	
  bounded	
  by	
  

•  If	
  each	
  classifier	
  is	
  (at	
  least	
  slightly)	
  beser	
  than	
  random	
  (εt	
  <	
  0.5),	
  AdaBoost	
  will	
  
achieve	
  zero	
  training	
  error	
  exponenIally	
  fast	
  (in	
  number	
  of	
  rounds	
  T)	
  !!	
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Using	
  1-­‐x	
  ≤	
  e-­‐x	
  	
  



Boos$ng	
  results	
  –	
  Digit	
  recogni$on	
  

•  BoosIng	
  oPen	
  
–  Robust	
  to	
  overfixng	
  
–  Test	
  set	
  error	
  decreases	
  even	
  aPer	
  training	
  error	
  is	
  zero	
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[Schapire,	
  1989]	
  

Test	
  error	
  

Train	
  error	
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Boos$ng	
  and	
  Logis$c	
  Regression	
  

LogisIc	
  regression	
  assumes:	
  

And	
  tries	
  to	
  maximize	
  data	
  likelihood:	
  

Equivalent	
  to	
  minimizing	
  log	
  loss	
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Boos$ng	
  and	
  Logis$c	
  Regression	
  

LogisIc	
  regression	
  equivalent	
  to	
  minimizing	
  log	
  loss	
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BoosIng	
  minimizes	
  similar	
  loss	
  funcIon!!	
  

Both	
  smooth	
  approxima$ons	
  of	
  0/1	
  loss!	
  



Logis$c	
  regression	
  and	
  Boos$ng	
  

LogisIc	
  regression:	
  

•  Minimize	
  loss	
  fn	
  

•  Define	
  	
  

	
   where	
  xj	
  predefined	
  

BoosIng:	
  

•  Minimize	
  loss	
  fn	
  

•  Define	
  	
  

	
  	
  	
  where	
  ht(xi)	
  defined	
  
dynamically	
  to	
  fit	
  data	
  

	
   (not	
  a	
  linear	
  classifier)	
  

•  Weights	
  αt	
  learned	
  
incrementally	
  over	
  t	
   26	
  



Bagging	
  

•  Related	
  approach	
  to	
  combining	
  classifiers:	
  	
  	
  

	
   1.	
  Run	
  independent	
  weak	
  learners	
  on	
  bootstrap	
  replicates	
  
(sample	
  with	
  replacement)	
  of	
  the	
  training	
  set	
  	
  

	
   2.	
  Average/vote	
  over	
  weak	
  hypotheses	
  	
  

	
   	
   Bagging	
  	
  	
  
Resamples	
  data	
  points	
  

Weight	
  of	
  each	
  classifier	
  is	
  
the	
  same	
  	
  

	
   Boos$ng	
  	
  
Reweights	
  data	
  points	
  
(modifies	
  their	
  distribuIon)	
  

Weight	
  is	
  dependent	
  on	
  
classifier’s	
  accuracy	
  



Effect	
  of	
  Outliers	
  

•  Good:	
  Can	
  idenIfy	
  outliers	
  since	
  focuses	
  on	
  examples	
  that	
  are	
  
hard	
  to	
  categorize	
  	
  

•  Bad:	
  Too	
  many	
  outliers	
  can	
  degrade	
  classificaIon	
  
performance	
  dramaIcally	
  increase	
  Ime	
  to	
  convergence	
  	
  



What	
  you	
  need	
  to	
  know	
  about	
  Boos$ng	
  

•  Combine	
  weak	
  classifiers	
  to	
  obtain	
  very	
  strong	
  classifier	
  
–  Weak	
  classifier	
  –	
  slightly	
  beser	
  than	
  random	
  on	
  training	
  data	
  

–  ResulIng	
  very	
  strong	
  classifier	
  –	
  can	
  eventually	
  provide	
  zero	
  training	
  error	
  
•  AdaBoost	
  algorithm	
  

•  BoosIng	
  vs	
  LogisIc	
  Regression	
  	
  
–  Similar	
  loss	
  funcIons	
  

–  Single	
  opImizaIon	
  (LR)	
  vs	
  Incrementally	
  improving	
  classificaIon	
  (B)	
  

•  Most	
  popular	
  applicaIon	
  of	
  BoosIng:	
  
–  Boosted	
  decision	
  stumps!	
  

–  Very	
  simple	
  to	
  implement,	
  very	
  effecIve	
  classifier	
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