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Many of these slides are derived fromTom Mitchell, Ziv-
Bar Joseph. Thanks!



Simple Learners

e Simple (a.k.a. weak) learners are good

— e.g., naive Bayes, logistic regression, decision stumps (or shallow
decision trees)

— don’t usually overfit

 Simple (a.k.a. weak) learners are bad

— can’t solve hard learning problems

 Can we make weak learners always good???
— Nolll

— But often yes...



Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the

input space

Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more
conviction
— Classifiers will be most “sure” about a particular part of the
space
— On average, do better than single classifier!

But how do you ???
— force classifiers to learn about different parts of the input
space?
— weight the votes of different classifiers?



Boosting [Schapire, 1989]

Idea: given a weak learner, run it multiple times on (reweighted) training data,
then let the learned classifiers vote

On each iteration t:
— weight each training example by how incorrectly it was classified

— Learn a hypothesis — h,
— A strength for this hypothesis — o,

Final classifier:
- Alinear combination of the votes of the different classifiers weighted by their

strength
H(X) = sign(Zaihy(X))

Practically useful
Theoretically interesting



Learning from weighted data

Sometimes not all data points are equal
— Some data points are more equal than others

Consider a weighted dataset
— D(i) — weight of i th training example (x',y")
— Interpretations:
« j th training example counts as D(i) examples

 If | were to “resample” data, | would get more samples of
“heavier” data points

Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

— e.g., MLE for Naive Bayes, redefine Count(Y=y) to be weighted
count



Learning From Weighted Data

 Consider a weighted dataset
— D(i) — weight of i th training example (xi,yi)
— Interpretatons:
e jth training example counts as D(i) examples
 If | were to “resample” data, | would get more samples of
“heavier” data points
* Now, in all calculations, whenever used, ith training
example counts as D(i) “examples”
— e.g., in MLE redefine Count(Y=y) to be weighted count
Unweighted data Weights D(i) .
Count(Y=y) = 5 I(Yi=y) | |Count(v=y) = 5 DI(Y'=y)

i=1




Boosting

Weights for
samples
D@ D)} {D;(D)} {D; (D)}
v / / ¢
h,(x) h (x) h (x) h.(x)

Learned
hypothesis \ /

H(x) = Slgn(z o, h,(x))



Given: (z1,91)s-- -, (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize Dq(2) = 1/m. Initially equal weights
Fort=1,...,T:

e Train weak learner using distribution D;. Naive Bayes, decision stump
e Getweak classifier h; : X — R.

e |Choose a; € R.
e Update:

Why? Dy (i) = Dy (1) exp(;:ltyz'ht(xi))

where Z; is a normalization factor

Zy = Z D (3) exp(—azy;he(z;)) Weights for all samples

. —1 should sumto 1
Output the final classifier: Z 5 D,.4(i)=1

T
H(x) = sign (Z atht(m)) :

t=1



Given: (z1,91)s-- -, (Tm,Ym) Where z; € X, y; € Y = {-1,+1}

Initialize Dy (z) = 1/m.

Fort=1,...,T:

Output the final classifier:

Initially equal weights

Train weak learner using distribution Dy. Naive Bayes, decision stump
Getweak classifier h; : X — R.

Choose a; € R.

Update: W hy >

Dy (i) exp(—auy;hi(z;))

D1 (i) = 7
" Dty = 220 { e ot 10y = helay)
Zy et if y; # he(z;)
Increase weight
T if wrong on sample i
H(z) = sign (Z atht(m)) :
t=1




What at to choose for hypothesis h,?
[Schapire, 1989]

 Weight update rule:

Dy (7) exp(—apyihi(z;))

Di11(i) = Z

oy = 5 In o
€t [Freund & Schapire '97]

€t = fj Dy (2)6(he(z;) 7 y;)
i—1

Weighted training error

g, = 0'if h, perfectly classifies all weighted data pts
g, = 1if h, perfectly wrong => -h, perfectly right

g =0.5
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Boosting Example (Decision Stump)
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Boosting Example

final

=sign| .4 +0.65 +0.92




Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps
(depth 1 trees), 27 benchmark datasets
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Analyzing Training Error

* Training error of final classifier is bounded by:

1 m 1 UL Convex
— > O(H(z;) Fyi) < — > exp(—yif(2:)) oper
mi;— mi=1 bound
where
(@) =3 arhi(); H(z) = sign(f(x))
exp loss
vy, = 1 exp(—v; f(z;)) If boosting can make

upper bound — 0, then

training error — 0
0/1 loss

6(H(x;) # vy;)

- )

14



Analyzing Training Error

* Training error of final classifier is bounded by:
1 2 1
— Y 6(H(z) #yi) < — > exp(—yif(z) =]] %
mi=1 M i=1 t
where f(z) =) aihy(z); H(z) = sign(f(z))
t m

Zy = > Dy(i) exp(—ouyihi(x;))
i=1

15



Analyzing Training Error

. Training error of final classiﬁer is bounded by:

— Z 6(H (x;) # y;) < — Z exp(—y;f(x;)) = HZt
where flz) = Zatht(w) H(iU) = Slgn(f(@)

Z Dy(7) exp(—ary;hi(x;) )

1=1
le alyzhl(mz)e O‘Qyth(xz)
Proof: | Using Weight Update Rule D3(7) = — 717,
Diyy (i) = Dy (i) exp(—auyihi(z4)) ~ 1 exp(—y; f(x;))
Z Dpyq1(i) = —
m [1: Z¢
Dy (i) =1/m. Wsts of all pts add to 1
_ 1 e—1Yih1(z;) m
DQ(Z) — E Zl Z DT—|—1(Z) =1

1=1



Analyzing Training Error

* Training error of final classifier is bounded by:

=Y S(H) E ) < - > exp(—yif (@) = [[ 2
i=1 i=1 t

where

f(x) =) athi(z); H(x) = sign(f(x))
t

If Z,< 1, training error decreases exponentially (even though
weak learners may not be good €, ~0.5)

Training Upper bound
error
t




Analyzing Training Error

* Training error of final classifier is bounded by:

=Y S(H) E ) < - > exp(—yif (@) = [[ 2
i=1 i=1 t

where

f(z) =) arh(x); H(z) = sign(f(z))
t
If we minimize [ ], Z,, we minimize our training error

We can tighten this bound greedily, by choosing a, and /, on
each iteration to minimize Z,

Zi= 3" Dy(i) exp(—asyshi(z)

i=1 1



What ¢, to choose for hypothesis 4,?

[Schapire, 1989]

We can minimize this b%nd by choosing «; on each iteration to minimize Z;
Zy = Y  Dy(3) exp(—ouy;ihi(z;))
=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:
1—c¢
ot = %ln ( t)
€t

Proof: Zt = >, Di@e™+ Y Dy(i)e”™
zyl;&ht(mz) Zyzzht(xz)
— eteat -+ (1 — €t>€_at

04 _ 1 — ¢
T — et — (1 —¢€)e =0 = 20 = ‘
Ot €t




What ¢, to choose for hypothesis 4,?

[Schapire, 1989]

We can minimize this bcr)rtzj,nd by choosing «; on each iteration to minimize Z;
Zy = Y  Dy(3) exp(—ouy;ihi(z;))
=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1 —
at:%ln( €t>
€t

Z Dt(i)eat —|— Z Dt(i)e_at
v:yiF=hi(x;) vyi=hi(z;)
= e+ (1 —e)e”

Proof: Zt

= 2\/e(1 — 1) = 1 — (1 — 2¢)2 20



Strong, weak classifiers

* Training error of the final classifier is bounded by

Using 1-x < e™

m T
S 0(H(z) Fyi) <[[Ze <exp | -2 (1/2 - &)?
t t=1

1
M i=1

* If each classifier is (at least slightly) better than random (e, < 0.5), AdaBoost will
achieve zero training error exponentially fast (in number of rounds T) !!



Boosting results — Digit recognition

[Schapire, 1989]

Test error

oo. Trainerror . ..
10 100 1000
# rounds

Boosting often
— Robust to overfitting
— Test set error decreases even after training error is zero



AdaBoost and AdaBoost. MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting and Logistic Regression

Logistic regression assumes:
1

1+ exp(f(x))

And tries to maximize data likelihood:

m 1
P(D|H) = @'1;[1 1 4+ exp(—y;f(x;))

P(Y =1|X) =

Equivalent to minimizing log loss

Y In(1 + exp(—y; f(2;)))

1=1



Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

S In(1 4 exp(—yif ()

1=1

Boosting minimizes similar loss function!!

=3 exp(—uif (2)

Both smooth approximations of 0/1 loss!

y; =1

0/1 loss

0 f(x;)

25



Logistic regression and Boosting

Logistic regression: Boosting:
* Minimize loss fn * Minimize loss fn
Z; IN(1 + exp(—y; f(x;))) exp(—y; f(z;))
i=1
* Define . Deﬁrze) > (2)
_ - flz) =) ahy(x
f(z) = %:wjx] r
where 4,(x;) defined
where x; predefined dynamically to fit data

(not a linear classifier)

* Weights o, learned
incrementally over t



Bagging

* Related approach to combining classifiers:

1. Run independent weak learners on bootstrap replicates
(sample with replacement) of the training set

2. Average/vote over weak hypotheses

Bagging Boosting
Resamples data points Reweights data points
(modifies their distribution)

Weight of each classifier is Weight is dependent on
the same classifier’s accuracy



Effect of Outliers

* Good: Can identify outliers since focuses on examples that are
hard to categorize

* Bad: Too many outliers can degrade classification
performance dramatically increase time to convergence



What you need to know about Boosting

Combine weak classifiers to obtain very strong classifier

— Weak classifier —slightly better than random on training data

— Resulting very strong classifier — can eventually provide zero training error
AdaBoost algorithm
Boosting vs Logistic Regression

— Similar loss functions

— Single optimization (LR) vs Incrementally improving classification (B)
Most popular application of Boosting:

— Boosted decision stumps!

— Very simple to implement, very effective classifier



