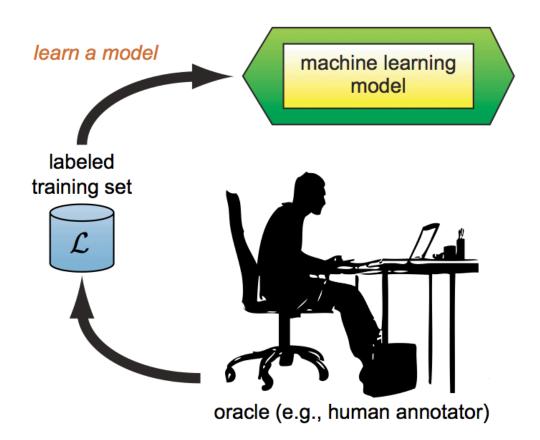
Active Learning

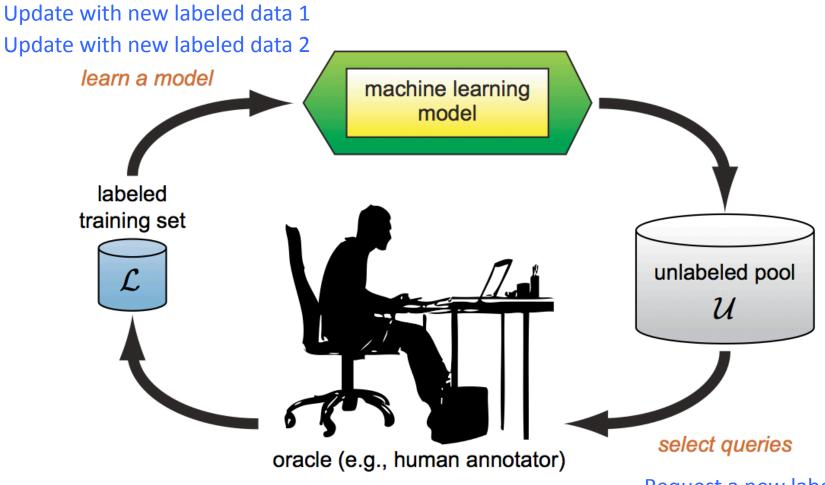
Machine Learning 10-601B

Batch/Passive Learning

 Training data are collected at once and available to learner as a batch



Active Learning

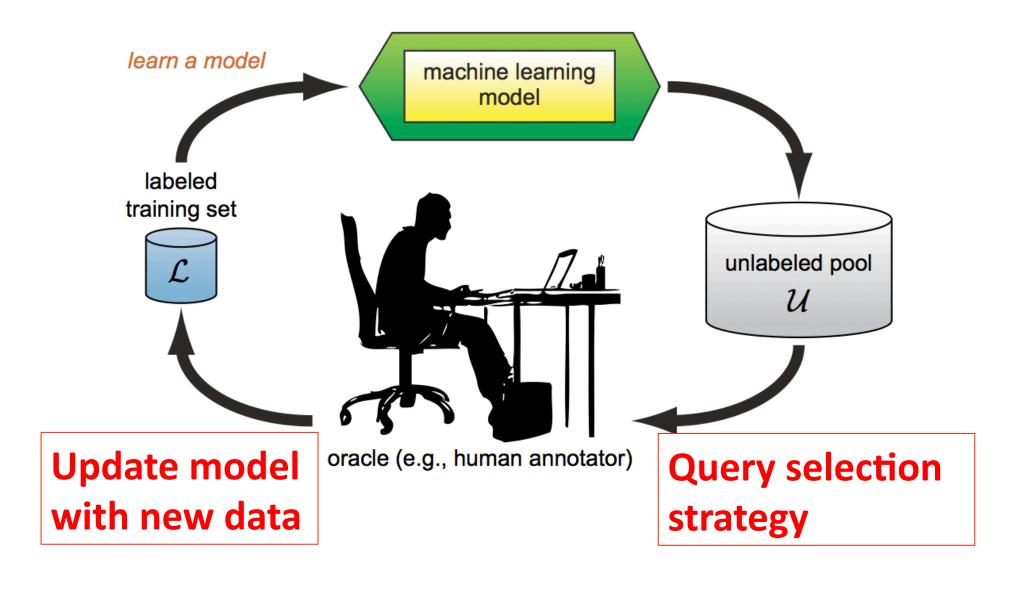


Request a new label 1
Request a new label 2

Why Active Learning?

- Want to collect best data at minimal cost
 - Collect more useful data than simply more data (quality over quantity)
 - Data collection may be expensive
 - Labeled data are more expensive and scarce than unlabeled data
 - Labeling speech data, documents, images by humans
 - Cost of time and materials for an experiment

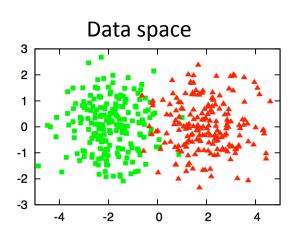
Active Learning

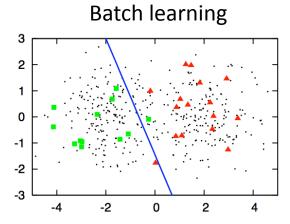


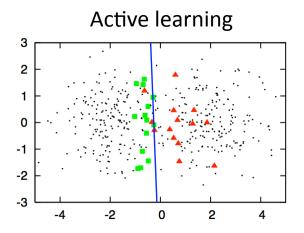
Pool Based Sampling

- Assume a small set of labeled data L, a large set of unlabeled data U
- Select from the pool of unlabeled data U, the most promising instances to request labels
 - Evaluate all unlabeled instances to select the best query

Pool Based Learning







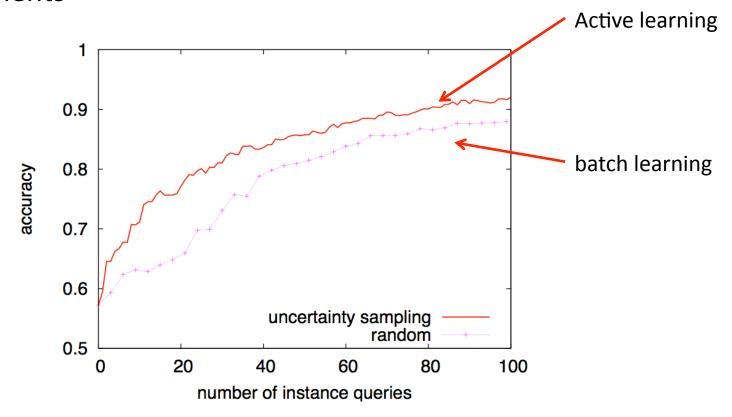
400 samples from two class Gaussians

Logistic regression trained with 30 labeled randomly drawn instances

A logistic regression model trained with 30 actively queried instances using uncertainty sampling. 90% accuracy, near Bayes optimal decision boundary

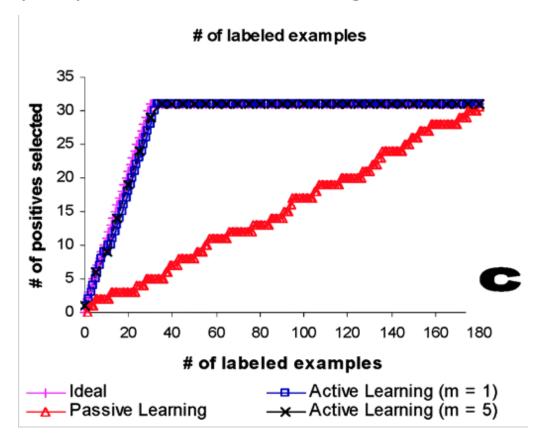
Example: Document Classification

 Logistic regression for classifying Hockey vs Baseball documents from 20 newsgroup corpus of 2000 Usenet documents



Example: Gene expression and Cancer classification

 Active learning for SVM takes 31 points to achieve same accuracy as passive/batch learning with 174



Selecting Instances for Labeling

- Challenges in active learning: Query strategy!
 - how to evaluate the informativeness of samples to select the most informative samples for labeling
 - Uncertainty sampling
 - Query by committee
 - Expected model changes

Uncertainty Sampling: Least Confident Sample

• Select the instance with the least confident prediction by the current probabilistic classifier $P_{\theta}(\hat{y}|x)$

$$x_{LC}^* = \underset{x}{\operatorname{argmax}} \ 1 - P_{\theta}(\hat{y}|x)$$

where $\hat{y} = \operatorname{argmax}_y P_{\theta}(y|x)$ is the predicted class label by the current estimate of the classifier

- For two-class classification, this selects samples with class probabilities near 0.5
- Does not extend well to multi-class classification

Uncertainty Sampling: Entropy

 Use entropy as a measure of uncertainty in prediction to select query

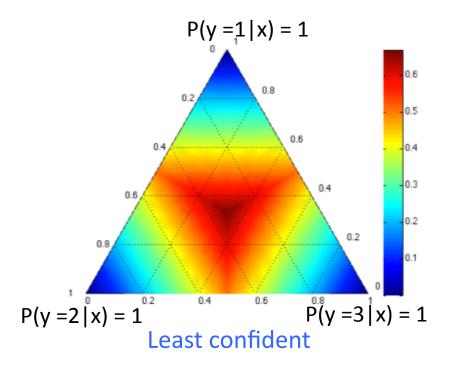
$$x_H^* = \underset{x}{\operatorname{argmax}} - \sum_{i} P_{\theta}(y_i|x) \log P_{\theta}(y_i|x)$$

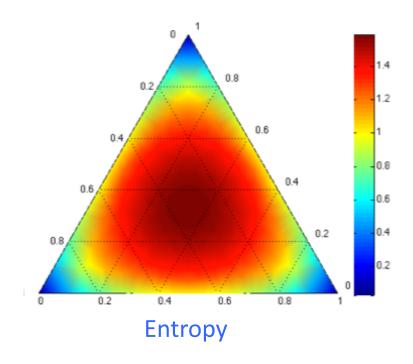
the summation is over all possible class labels

Select an instance with the highest uncertainty measured by entropy

Least Confident vs Entropy

- The simplex of P(y|x) for 3 class classification
 - The middle of the simplex: the largest uncertainty
 - Corners of the simplex: the lowest uncertainty





Simple and Widely Used

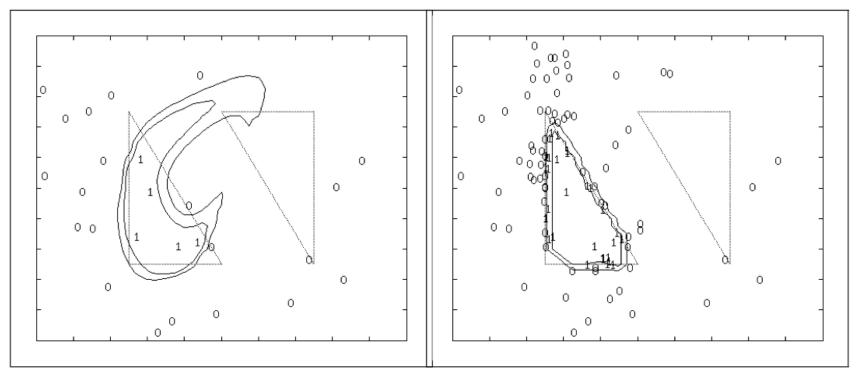
- text classification
 - Lewis & Gale ICML'94;
- POS tagging
 - Dagan & Engelson, ICML'95;
 Ringger et al., ACL'07
- disambiguation
 - Fujii et al., CL'98;
- parsing
 - Hwa, CL' 04;

- information extraction
 - Scheffer et al., CAIDA'01;Se0les & Craven, EMNLP'08
- word segmentation
 - Sassano, ACL'02
- speech recognition
 - Tur et al., SC'05
- transliteration
 - Kuo et al., ACL'06
- translation
 - Haffari et al., NAACL'09

Problems with Uncertainty Sampling

Initial random sample misses the right triangle

Neural net uncertainty sampling only queries the left side



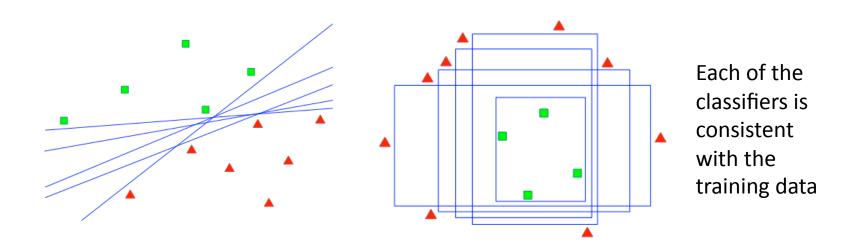
Problems with Uncertainty Sampling

- Plain uncertainty sampling only uses the confidence of a single classifier
 - Sometimes called a point estimate for parametric models
 - This classifier can become overly confident about instances it really knows nothing about!
- Instead let's consider a different notion of uncertainty, about the classifier itself

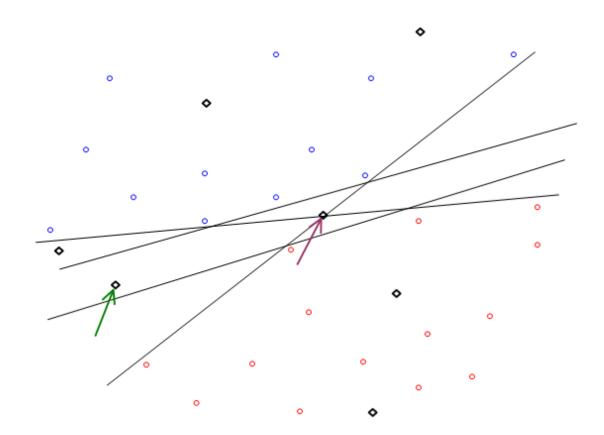
- Maintain a committee of classifiers $C=\{\theta^{(1)},\ldots,\theta^{(C)}\}$, all of which were trained on labeled data L Uncertainty among the classifiers
- Let the committee vote for the labels of unlabeled data
- Select the samples on which the committee disagrees the most
 - Vote entropy: C is # of classifiers in the committee, $V(y_i)$ is the votes from

$$x_{VE}^* = \underset{x}{\operatorname{argmax}} - \sum_{i} \frac{V(y_i)}{C} \log \frac{V(y_i)}{C}$$

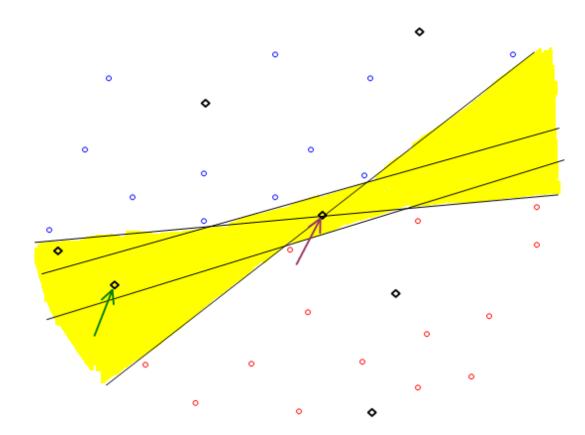
- Committee consists of classifiers in the same version space (all classifiers consistent with the training data)
- By selecting the samples that the committee disagrees on, we are trying to reduce the version space



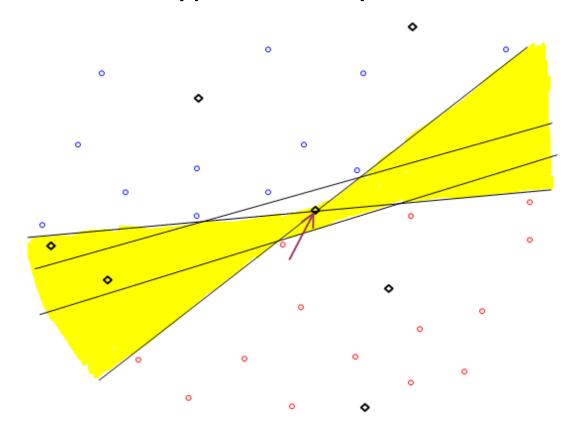
• Which unlabelled point should you choose?



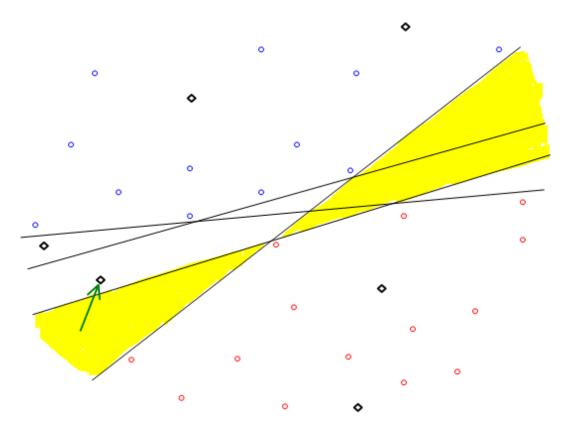
• Yellow = valid hypotheses



 Point on max-margin hyperplane does not reduce the number of valid hypotheses by much

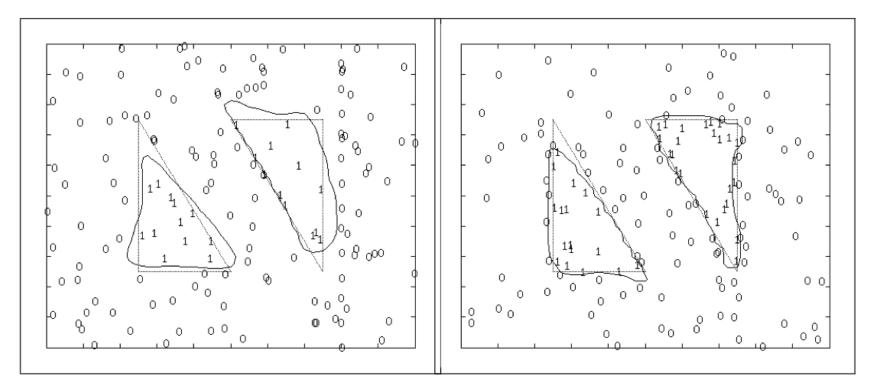


 Queries an example based on the degree of disagreement between committee of classifiers



How to Form a Committee

- Sample models from the posterior distribution of the parameter θ , $P(\theta|L)$
- Standard ensemble methods (bagging, boosting etc.)



Learned from 150 random samples

Learned from 150 samples selected by query-by-committee method

Expected Model Change

- Select the instance that would induce the greatest change in the model
- Can be applied to any models that involves gradients during training, whereas uncertainty sampling can be applied mostly for probabilistic models

Expected Model Change

- $abla \ell_{ heta}(\mathcal{L})$: gradient of the model given the current estimate of the parameter
- $\nabla \ell_{\theta}(\mathcal{L} \cup \langle x, y \rangle)$: Gradient of the model after seeing the query x and the label y
- Since we do not know the label y, we take the expectation with respect to y and select the sample for labeling as

$$x_{EGL}^* = \underset{x}{\operatorname{argmax}} \sum_{i} P_{\theta}(y_i|x) \left\| \nabla \ell_{\theta}(\mathcal{L} \cup \langle x, y_i \rangle) \right\|$$

• $\|
abla \ell_{ heta}(\mathcal{L})\|$ is near zero after training with L, so we approximate

$$\nabla \ell_{\theta}(\mathcal{L} \cup \langle x, y_i \rangle) \approx \nabla \ell_{\theta}(\langle x, y_i \rangle)$$

Active vs Semi-supervised Learning

 both try to attack the same problem: making the most of unlabeled data U

Uncertainty sampling

query instances the model is least confident about

Expectation-maximization

Propagate confident labelings among unlabeled data

Query by committee

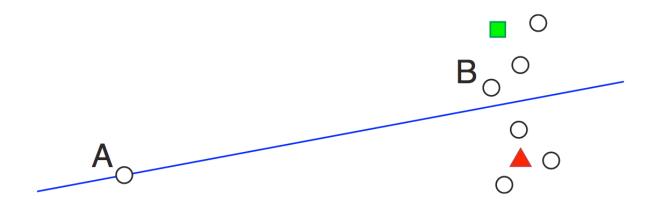
use ensembles to rapidly reduce the version space

Co-training

Use ensembles with multiple views to constrain the version space w.r.t. unlabeled data

Issues with Outlier

A sample may be selected for labeling simply because it is an outlier



- Data A is an outlier
- Data B is more likely to improve the classifier if labeled

Handling Outlier Issues

- Density-weighted sampling
 - Takes into account the underlying distribution in x
 - Informative instance x is the representative sample from the full sample space

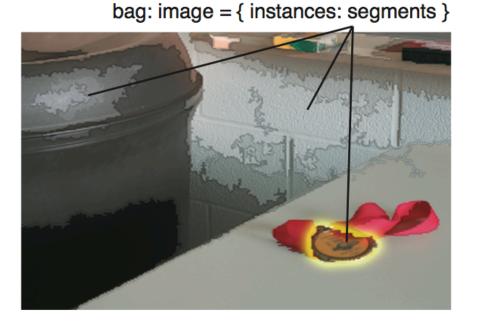
$$x_{ID}^* = \underset{x}{\operatorname{argmax}} \phi_A(x) \times \left(\frac{1}{U} \sum_{u=1}^{U} \operatorname{sim}(x, x^{(u)})\right)^{\beta}$$

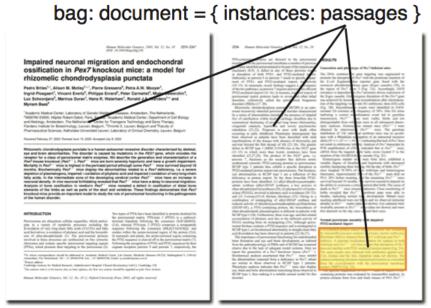
Informativeness measure from the query strategy

- Average similarity to other instances in the input distribution using unlabeled data U
- β : user-determined weight for the amount of outlier control

More Applications of Active Learning

- Bag-of-words for document classification
- bag-of-segments for image classification
- Request labelings for instances in a "bag"





Summary

- Active learning vs passive learning
- Query strategies
 - Uncertainty sampling
 - Query by committee method