Support Vector Machine

Machine Learning 10-601B
Seyoung Kim

Types of classifiers

- We can divide the large variety of classification approaches into roughly three major types
 - 1. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors
 - 2. Classifiers based on generative models:
 - build a generative statistical model
 - e.g., Naïve Bayes classifier, classifiers derived from Bayesian networks
 - 3. Classifiers based on discriminative models:
 - directly estimate a decision rule/boundary
 - e.g., decision tree, perceptron, logistic regression

Recall logistic regression

Recall logistic regression

Max margin classifiers

Instead of fitting all points, focus on boundary points

Learn a boundary that leads to the largest margin from both

sets of points

Max margin classifiers

- Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from both sets of points

Why?

- Intuitive, 'makes sense'
- Some theoretical support
- Works well in practice

Max margin classifiers

- Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from both sets of points

Specifying a max margin classifier

Classify as +1 if $w^Tx+b \ge 1$

Classify as -1 if $w^Tx+b \le -1$

Undefined if $-1 < w^T x + b < 1$

Specifying a max margin classifier

Is the linear separation assumption realistic?

We will deal with this shortly, but let's assume for now data are linearly separable

Classify as +1 if
$$w^Tx+b \ge 1$$

Classify as -1 if
$$w^Tx+b \le -1$$

Undefined if
$$-1 < w^Tx + b < 1$$

Maximizing the margin


```
Classify as +1 if w^Tx+b \ge 1
Classify as -1 if w^Tx+b \le -1
Undefined if -1 < w^Tx+b < 1
```

- Let's define the width of the margin as M
- How can we encode our goal of maximizing M in terms of our parameters (w and b)?
- Let's start with a few obsevrations

Maximizing the margin


```
Classify as +1 if w^Tx+b \ge 1
Classify as -1 if w^Tx+b \le -1
Undefined if -1 < w^Tx+b < 1
```

- Observation 1: the vector w is orthogonal to the +1 plane
- Why?

Let u and v be two points on the +1 plane, then for the vector defined by u and v we have $w^{T}(u-v) = 0$

Corollary: the vector w is orthogonal to the -1 plane

Maximizing the margin


```
Classify as +1 if w^Tx+b \ge 1
Classify as -1 if w^Tx+b \le -1
Undefined if -1 < w^Tx+b < 1
```

- Observation 1: the vector w is orthogonal to the +1 and -1 planes
- Observation 2: if x^+ is a point on the +1 plane and x^- is the closest point to x^+ on the -1 plane then

$$x^+ = \lambda w + x^-$$

Since w is orthogonal to both planes we need to 'travel' some distance along w to get from x^+ to x^-

Putting it together

We can now define M in terms of w and b

Putting it together

We can now define M in terms of w and b

Finding the optimal parameters

We can now search for the optimal parameters by finding a solution that:

- 1. Correctly classifies all points
- 2. Maximizes the margin (or equivalently minimizes w^Tw)

Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

$$\min_{U} \frac{u^{T} R u}{2} + d^{T} u + c$$

subject to n inequality constraints:

$$a_{11}u_1 + a_{12}u_2 + \dots \le b_1$$

$$a_{n1}u_1 + a_{n2}u_2 + \dots \le b_n$$

and k equality constraints:

$$a_{n+1,1}u_1 + a_{n+1,2}u_2 + \dots = b_{n+1}$$

•

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots = b_{n+k}$$

Quadratic term

When a problem can be specified as a QP problem we can use generic solvers that are better than gradient descent or simulated annealing

SVM as a QP problem

Min $(w^Tw)/2$

subject to the following inequality constraints:

For all x in class + 1

$$w^Tx+b \ge 1$$

For all x in class - 1

$$w^Tx+b \leq -1$$

A total of n constraints if we have n input samples

$$\min_{U} \frac{u^{T} R u}{2} + d^{T} u + c$$

subject to n inequality constraints:

$$a_{11}u_1 + a_{12}u_2 + \dots \le b_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}u_1 + a_{n2}u_2 + \dots \le b_n$$

and k equivalency constraints:

$$a_{n+1,1}u_1 + a_{n+1,2}u_2 + \dots = b_{n+1}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots = b_{n+k}$$

Non linearly separable case

• So far we assumed that a linear plane can perfectly separate the points

Non linearly separable case

• Instead of minimizing the number of misclassified points we can minimize the *distance* between these points and their correct plane

The new optimization problem is:

$$\min_{w} \frac{w^{T}w}{2} + \sum_{i=1}^{n} C\varepsilon_{i}$$

subject to the following inequality constraints:

For all x_i in class + 1

$$w^T x + b \ge 1 - \varepsilon_i$$

For all x_i in class - 1

$$w^T x + b \le -1 + \varepsilon_i$$

Wait. Are we missing something?

Final optimization for non linearly separable case

+1 plane
-1 plane

The new optimization problem is:

$$\min_{w} \frac{w^{T}w}{2} + \sum_{i=1}^{n} C\varepsilon_{i}$$

subject to the following inequality constraints:

For all x_i in class + 1

$$w^T x + b \ge 1 - \varepsilon_i$$

For all x_i in class - 1

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}+\mathbf{b} \leq -1+ \varepsilon_{\mathsf{i}}$$

For all i

$$\varepsilon_1 \ge 0$$

A total of n constraints

Another n constraints

Where we are

Two optimization problems: For the separable and non separable cases

 $\min_{w} \frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{2}$

For all x in class + 1

$$w^Tx+b \ge 1$$

For all x in class - 1

$$w^Tx+b \leq -1$$

$$\min_{w} \frac{w^{T}w}{2} + \sum_{i=1}^{n} C\varepsilon_{i}$$

For all x_i in class + 1

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}+\mathbf{b} \geq 1-\mathbf{\varepsilon}_{\mathsf{i}}$$

For all x_i in class - 1

$$w^Tx+b \le -1+ \varepsilon_i$$

For all i

An alternative (dual) representation of the SVM QP

- We will start with the linearly separable case
- Instead of encoding the correct classification rule and constraint we will use Lagrange multipliers to encode it as part of our minimization problem

Min
$$(w^Tw)/2$$

For all x in class +1
 $w^Tx+b \ge 1$
For all x in class -1
 $w^Tx+b \le -1$
Why?
Min $(w^Tw)/2$
 $(w^Tx_i+b)y_i \ge 1$

An alternative (dual) representation of the SVM QP

Min $(w^Tw)/2$ $(w^Tx_i+b)y_i \ge 1$

- We will start with the linearly separable case
- Instead of encoding the correct classification rule and constraint we will use Lagrange multipliers to encode it as part of our minimization problem

Recall that Lagrange multipliers can be applied to turn the following problem:

```
\min_{\mathbf{x}} \mathbf{x}^2
s.t. \mathbf{x} \ge \mathbf{b}
To
\min_{\mathbf{x}} \max_{\alpha} \mathbf{x}^2 - \alpha(\mathbf{x} - \mathbf{b})
s.t. \alpha \ge 0
```


Lagrange multiplier for SVMs

Dual formulation

$$\min_{w,b} \max_{\alpha} \frac{\mathbf{w}^{\mathrm{T}} \mathbf{w}}{2} - \sum_{i} \alpha_{i} [(\mathbf{w}^{\mathrm{T}} x_{i} + b) y_{i} - 1]$$

$$\alpha_i \ge 0 \quad \forall i$$

Original formulation

Min
$$(w^Tw)/2$$

$$(w^Tx_i+b)y_i \ge 1$$

Using this new formulation we can derive w and b by taking the derivative w.r.t. w leading to:

$$w = \sum_{i} \alpha_{i} x_{i} y_{i}$$

$$\alpha_i \ge 0$$

Finally, taking the derivative w.r.t. b we get:

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Dual SVM for linearly separable case

Substituting w into our target function and using the additional constraint we get:

Dual formulation

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \ge 0 \quad \forall i$$

$$\min_{w,b} \frac{\mathbf{w}^{\mathrm{T}} \mathbf{w}}{2} - \sum_{i} \alpha_{i} [(\mathbf{w}^{\mathrm{T}} x_{i} + b) y_{i} - 1]$$
$$\alpha_{i} \ge 0 \qquad \forall i$$

$$w = \sum_{i} \alpha_{i} x_{i} y_{i}$$
$$\alpha_{i} \ge 0$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Dual SVM - interpretation

Dual SVM for linearly separable case

Our dual target function:

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x_{i}}^{\mathsf{T}} \mathbf{x_{j}}$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_i \ge 0 \quad \forall i$$

Dot product for all training samples

Dot product with training samples

To evaluate a new sample x_j we need to compute:

w^T
$$x_j + b = \sum_i \alpha_i y_i x_i$$
^T $x_j + b$

Is this too much computational work (for example when using transformation of the data)?

Important points

- Difference between regression classifiers and SVMs
- Maximum margin principle
- Target function for SVMs
- Linearly separable and non separable cases