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Many of these slides are derived fromTom
Mitchell, Ziv Bar-Joseph. Thanks!



Types of classifiers

* We can divide the large variety of classification approaches into roughly three major types

1. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

2. Classifiers based on generative models:
- build a generative statistical model
- e.g., Naive Bayes classifier, classifiers derived from Bayesian networks

3. Classifiers based on discriminative models:
- directly estimate a decision rule/boundary
- e.g., decision tree, perceptron, logistic regression



Linear Classifiers

Recall logistic regression

+1 if sign(w'x+b)=0

-1 if sign(w'x+b)<0




Linear Classifiers

Recall logistic regression
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Linear Classifiers

Recall logistic regression min, ELOSS(yi,WTxi)
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Linear Classifiers

Recall logistic regression

Many more possible

classifiers \
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Max margin classifiers

e |nstead of fitting all points, focus on boundary points

e Learn a boundary that leads to the largest margin from both
sets of points
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Max margin classifiers

e |nstead of fitting all points, focus on boundary points

e Learn a boundary that leads to the largest margin from both
sets of points
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Max margin classifiers

e |nstead of fitting all points, focus on boundary points

e Learn a boundary that leads to the largest margin from both
sets of points
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Specifying a max margin classifier

‘et dass Class +1 plane

predt
D boundary
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Classify as +1 if wix+b =1
Classify as -1 if wix+b <-1

Undefined if -1<wix+b <1



Specifying a max margin classifier
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Classify as +1 if wix+b =1
Classify as -1 if wix+b <-1

Undefined if -1<wix+b <1



Maximizing the margin

Classify as+1 if wix+tb=1
Classifyas-1 if wixtb=<-1
Undefined if -1<w'x+b<1

e Let’s define the width of the margin as M

e How can we encode our goal of maximizing M in terms of our
parameters (w and b)?

e Let’s start with a few obsevrations



Maximizing the margin

\ Classify as+1 if wix+tb=1

Classifyas-1 if wixtb=<-1
Undefined if -1<wix+b<1
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e Observation 1: the vector w is orthogonal to the +1 plane
e Why?

Let u and v be two points on the +1 plane, then for
the vector defined by u and v we have w'(u-v) =0

Corollary: the vector w is orthogonal to the -1 plane



Maximizing the margin

\ Classify as+1 if wix+tb=1

Classifyas-1 if wixtb=<-1
Undefined if -1<wix+b<1

e Observation 1: the vector w is orthogonal to the +1 and -1 planes

e Observation 2: if x* is a point on the +1 plane and x  is the closest point to x*
on the -1 plane then

Xt =AW+ X

Since w is orthogonal to both planes we
need to ‘travel’ some distance along w to
get from x* to x



Putting it together
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Putting it together
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Finding the optimal parameters

W W

We can now search for the optimal parameters by finding a solution
that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)



Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

T
u Ru
+d'u+c

min,,

subject to n inequality constraints:

a, u +a.,u,+..<b :
1141 T Y2t 1 Quadratic term

au +a,u,+..=< b When a problem can be specified
as a QP problem we can use
generic solvers that are better
than gradient descent or

A, U+ Ay Uy + .= D, simulated annealing

n

and k equality constraints:

a

n+k

Mo+ a, oy +.=b

n+k



SVM as a QP problem
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Min (w'w)/2

subject to the following inequality
constraints:

For all xinclass+1

A total of n
constraints if
we have n input
samples

wix+b =1
For all xinclass-1

wix+b =< -1

w

u' Ru

min,, +d u+c

subject to n inequality constraints:

a, u, + a,U, + ...< b,

a u +a,u,+..<b

n

and k equivalency constraints:

Ay Uy + QA Uy + = b

n+l

gty + Ay Uy + = b

n+k




Non linearly separable case

e So far we assumed that a linear plane can perfectly separate the

points
e But this is not usally the case

- noise, outliers

Hard to solve (two

o o® minimization problems)

How can we convert this to a QP
problem?

- Minimize training errors?
min wTw
min #errors

- Penalize training errors:

min w'w+C*(#errors)

Hard to encode in a QP
problem



Non linearly separable case

e Instead of minimizing the number of misclassified points we can minimize
the distance between these points and their correct plane

The new optimization problem is:

. W'W X}
min,, + E Ce,
2 =1

subject to the following inequality
-1 olane constraints:
@/ ; P

For all x;in class +1
wix+b = 1- g,

For all x;in class -1
wix+b < -1+¢,

Wait. Are we missing something?




Final optimization for non linearly separable
case

The new optimization problem is:

. W'W %
min,, + E Ce,
i=1

2

subject to the following inequality
+1 plane constraints:
/

For all x;inclass +1
T
Wix+b = 1- g, A total of n

For all x;inclass -1 SRS

wix+b < -1+ ¢,

For all i

Another n
gz=0 constraints




Where we are

Two optimization problems: For the separable and non separable cases
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An alternative (dual) representation of the SVM

QP

e We will start with the linearly separable case

¢ Instead of encoding the correct classification rule and
constraint we will use Lagrange multipliers to encode it as
part of our minimization problem

Min (wTw)/2

For all xin class +1
wix+b =1
For all xin class -1

wix+b = -1

Why? U

Min (wTw)/2

(Wix+b)y. = 1



An alternative (dual) representation of the SVM
QP

Min (w'w)/2

(Wix+b)y, = 1
e We will start with the linearly separable case

¢ Instead of encoding the correct classification rule and
constraint we will use Lagrange multipliers to encode it as part
of our minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:

min, x2
st.x=Db ’ ' 5

N Ve Allowed min
TO S ~ 7 /

, S L7
min, max,, x2-o(x-b) "\

st.a=0

Global min




Lagrange multiplier for SVMs

Dual formulation Original formulation

- _Eai[(wai+b)yi—1] Min (w'w)/2

min,, , max, 5
.
o =0 ve (w'x+b)y, = 1

Using this new formulation we can derive w and b by taking
the derivative w.r.t. w leading to:

w= Eaixiyi
i

o, =0

Finally, taking the derivative w.r.t. b we get:

Eaiyi =0



Dual SVM for linearly separable case

. W W -
Substituting w into our target min,, , =5 Eai[(w x;+b)y, -1l
function and using the o
additional constraint we get: a;z0 Vi
Dual formulation
w = Ealxiyi
1 ]
T
max, Eai _Ezaianiiji X; a;, =0
j i

ZaiYi =0 Ealyi =0

o, =0 Vi



Dual SVM - interpretation

For o’s that are not O

28



Dual SVM for linearly separable case

Our dual target function:  max Ea — Ea oYY X x

\

EO‘ Dot product for all
training samples

a.zO Vi

l

Dot product with training
samples

To evaluate a new sample x; we
need to compute:

T
W xj+b=2aiyixi X;+b

Is this too much computational work (for example
when using transformation of the data)?



Important points

e Difference between regression classifiers and SVMs
e Maximum margin principle
e Target function for SVMs

e Linearly separable and non separable cases



