

Naïve Bayes Classifier

Machine Learning 10-601B

Seyoung Kim

Many of these slides are derived from Tom
Mitchell, William Cohen, Eric Xing. Thanks!

Let's learn classifiers by learning $P(Y|X)$

Consider $Y = \text{Wealth}$, $X = \langle \text{Gender}, \text{HoursWorked} \rangle$

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

$P(\text{gender}, \text{hours_worked}, \text{wealth})$
 $\Rightarrow P(\text{wealth} | \text{gender}, \text{hours_worked})$

Gender	HrsWorked	$P(\text{rich} \text{G,HW})$	$P(\text{poor} \text{G,HW})$
F	<40.5	.09	.91
F	>40.5	.21	.79
M	<40.5	.23	.77
M	>40.5	.38	.62

How many parameters must we estimate?

Suppose $X = \langle X_1, \dots, X_n \rangle$
where X_i and Y are boolean RV's

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
M	<40.5	.23	.77
M	>40.5	.38	.62

To estimate $P(Y | X_1, X_2, \dots, X_n)$

2^n quantities need to be estimated!

If we have 30 boolean X_i 's: $P(Y | X_1, X_2, \dots, X_{30})$

$2^{30} \sim 1 \text{ billion!}$

You need lots of data or a very small n

Can we reduce params using Bayes Rule?

Suppose $X = \langle X_1, \dots, X_n \rangle$

where X_i and Y are boolean RV's

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

How many parameters for $P(X|Y) = P(X_1, \dots, X_n | Y)$?

$$(2^n - 1) \times 2$$

How many parameters for $P(Y)$?

$$1$$

Naïve Bayes

Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_j are conditionally independent given Y , for all $i \neq j$

Conditional independence

- Two variables A,B are *independent* if

$$P(A \wedge B) = P(A) * P(B)$$

$$\forall a,b : P(A = a \wedge B = b) = P(A = a) * P(B = b)$$

- Two variables A,B are *conditionally independent given C* if

$$P(A,B | C) = P(A | C) * P(B | C)$$

$$\forall a,b,c : P(A = a \wedge B = b | C = c) = P(A = a | C = c) * P(B = b | C = c)$$

Conditional Independence

Definition: X is conditionally independent of Y given Z , if the probability distribution governing X is independent of the value of Y , given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X | Y, Z) = P(X | Z)$$

E.g. $P(Thunder | Rain, Lightning) = P(Thunder | Lightning)$

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

Given this assumption, then:

$$\begin{aligned} P(X_1, X_2|Y) &= P(X_1|X_2, Y)P(X_2|Y) \\ \text{Chain rule} &= P(X_1|Y)P(X_2|Y) \end{aligned}$$

Conditional Independence

$$\text{in general: } P(X_1 \dots X_n|Y) = \prod_{i=1}^n P(X_i|Y)$$

$(2^n-1) \times 2$

Reducing the number of parameters to estimate

$$P(Y|X_1, \dots, X_n) = \frac{P(X_1, \dots, X_n | Y)P(Y)}{P(X_1, \dots, X_n)}$$

To make this tractable we naively assume conditional independence of the features given the class: ie

$$P(X_1, \dots, X_n | Y) = P(X_1 | Y) \cdot P(X_2 | Y) \cdots P(X_n | Y)$$

Now: I only need to estimate ... parameters:

$$P(X_1 | Y), P(X_2 | Y), \dots, P(X_n | Y), P(Y)$$

How many parameters to describe $P(X_1, \dots, X_n | Y)$? $P(Y)$?

- Without conditional indep assumption? $(2^n - 1) \times 2 + 1$
- With conditional indep assumption? $2n + 1$

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (given data for X and Y)
for each* value y_k
estimate $\pi_k \equiv P(Y = y_k)$
for each* value x_{ij} of each attribute X_i
estimate $\theta_{ijk} \equiv P(X_i = x_{ij} | Y = y_k)$

Training Naïve Bayes Classifier Using MLE

- From the data D , estimate *class priors*:
 - For each possible value of Y , estimate $Pr(Y=y_1), Pr(Y=y_2), \dots, Pr(Y=y_k)$
 - An MLE estimate: $\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$
- From the data, estimate the conditional probabilities
 - If every X_i has values x_{i1}, \dots, x_{ik}
 - for each y_i and each X_i estimate $q(i, j, k) = Pr(X_i = x_{ij} | Y = y_i)$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij} | Y = y_k) = \frac{\#D\{X_i = x_{ij} \wedge Y = y_k\}}{\#D\{Y = y_k\}}$$

Number of items in
dataset D for which $Y=y_k$

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (given data for X and Y)

for each* value y_k

estimate $\pi_k \equiv P(Y = y_k)$

for each* value x_{ij} of each attribute X_i

estimate $\theta_{ijk} \equiv P(X_i = x_{ij} | Y = y_k)$

- Classify (X^{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$$

* probabilities must sum to 1, so need estimate only $n-1$ of these...

Example: Live in Sq Hill? $P(S|G,D,E)$

- $S=1$ iff live in Squirrel Hill
- $G=1$ iff shop at SH Giant Eagle
- $D=1$ iff Drive or Carpool to CMU
- $E=1$ iff Even # letters last name

What probability parameters must we estimate?

$P(S=1) :$

$P(D=1 | S=1) :$

$P(D=1 | S=0) :$

$P(G=1 | S=1) :$

$P(G=1 | S=0) :$

$P(E=1 | S=1) :$

$P(E=1 | S=0) :$

$P(S=0) :$

$P(D=0 | S=1) :$

$P(D=0 | S=0) :$

$P(G=0 | S=1) :$

$P(G=0 | S=0) :$

$P(E=0 | S=1) :$

$P(E=0 | S=0) :$

Naïve Bayes: Subtlety #1

If unlucky, our MLE estimate for $P(X_i | Y)$ might be zero. (e.g., nobody in your sample has $X_i = <40.5$ and $Y=\text{rich}$)

- Why worry about just one parameter out of many?

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

If one of these terms is 0...

- What can be done to avoid this?

Estimating Parameters

- Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\hat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

- Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\begin{aligned}\hat{\theta} &= \arg \max_{\theta} P(\theta \mid \mathcal{D}) \\ &= \arg \max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}\end{aligned}$$

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \wedge Y = y_k\}}{\#D\{Y = y_k\}}$$

MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + (\beta_k - 1)}{|D| + \sum_m (\beta_m - 1)}$$

Only difference:
“imaginary” examples

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \wedge Y = y_k\} + (\beta_k - 1)}{\#D\{Y = y_k\} + \sum_m (\beta_m - 1)}$$

Naïve Bayes: Subtlety #2

Often the X_i are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated $P(Y|X)$?
 - Special case: what if we add two copies: $X_i = X_k$

Special case: what if we add two copies: $X_i = X_k$

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

Redundant terms

About Naïve Bayes

- Naïve Bayes is blazingly fast and quite robust!

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?
- How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach

the world of **TOTAL**

all about the company

Our energy exploration, production, and distribution operations span the globe, with activities in more than 100 countries.

At TOTAL, we draw our greatest strength from our fast-growing oil and gas reserves. Our strategic emphasis on natural gas provides a strong position in a rapidly expanding market.

Our expanding refining and marketing operations in Asia and the Mediterranean Rim complement already solid positions in Europe, Africa, and the U.S.

Our growing specialty chemicals sector adds balance and profit to the core energy business.

► All About The Company

- Global Activities
- Corporate Structure
- TOTAL's Story
- Upstream Strategy
- Downstream Strategy
- Chemicals Strategy
- TOTAL Foundation
- Homepage

aardvark	0
about	2
all	2
Africa	1
apple	0
anxious	0
...	
gas	1
...	
oil	1
...	
Zaire	0

Learning to classify document: $P(Y|X)$ the “Bag of Words” model

- Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, \dots, X_n \rangle$ = document
- X_i is a random variable describing the word at position i in the document
- possible values for X_i : any word w_k in English
- Document = bag of words: the vector of counts for all w_k 's
 - (like #heads, #tails, but we have more than 2 values)

Naïve Bayes Algorithm – discrete X_i

- Train Naïve Bayes (examples)

for each value y_k

estimate $\pi_k \equiv P(Y = y_k)$

for each value x_j of each attribute X_i

estimate

$\theta_{ijk} \equiv P(X_i = x_j | Y = y_k)$

prob that word x_j appears
in position i , given $Y=y_k$

- Classify (X^{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$$

* Additional assumption: word probabilities are position independent
 $\theta_{ijk} = \theta_{mjk}$ for all i, m

MAP estimates for bag of words

MAP estimate for multinomial

$$\theta_i = \frac{\alpha_i + \beta_i - 1}{\sum_{m=1}^k \alpha_m + \sum_{m=1}^k (\beta_m - 1)}$$

$$\theta_{aardvark} = P(X_i = \text{aardvark}) = \frac{\# \text{ observed 'aardvark'} + \# \text{ hallucinated 'aardvark'} - 1}{\# \text{ observed words} + \# \text{ hallucinated words} - k}$$

What β 's should we choose?

Twenty NewsGroups

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics	misc.forsale
comp.os.ms-windows.misc	rec.autos
comp.sys.ibm.pc.hardware	rec.motorcycles
comp.sys.mac.hardware	rec.sport.baseball
comp.windows.x	rec.sport.hockey
alt.atheism	sci.space
soc.religion.christian	sci.crypt
talk.religion.misc	sci.electronics
talk.politics.mideast	sci.med
talk.politics.misc	
talk.politics.guns	

Naive Bayes: 89% classification accuracy

What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes
 - What it is
 - Why we use it so much
 - Training using MLE, MAP estimates