Logistic Regression

Machine Learning 10-601

Many of these slides are derived from Tom
Mitchell, William Cohen, Eric Xing. Thanks!



Logistic Regression
|dea:

* Naive Bayes allows computing P(Y|X) by learning P(Y)
and P(X]Y)
— Essentially learns P(Y)P(X|Y) = P(Y,X)

 Why not learn P(Y|X) directly?



e Consider learning f: X 2 Y, where
e Problem set-up:
e X is a vector of real-valued features, <X, ... X, >
e Y is boolean
» Naive Bayes assumption: assume all X are conditionally independent given Y
e model P(X; | Y =y,) as Gaussian N(w,,0:)
e model P(Y) as Bernoulli ()

e What does that imply about the form of P(Y|X)?

P(Y =1|X =< Xq,..Xn >) =

1 4+ exp(wg + >; w; X;)



Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Y =1)
P(Y = 1)P(X|Y =1) 4+ P(Y =0)P(X|Y =0)

P(Y = 1]X) =

Bayes rule 1

P(Y=0)P(X|Y=0)
1+ P(Yzl)P(XIYzl)

1
P(Y=0)P(X|Y=0)
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Very convenient!

1
14+ exp(wg + >, w; X;)

P(Y =1|X =< X1,..Xn >) =
implies

_exp(wg + > wi X;)
14+ exp(wg + X, w; X;)

implies
P(Y = 0]|X)
PlY = 1:X) = exp(wo + > w; X;)
— 1 linear classification
/ rule!
implies
P(Y = 0|X)
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Logistic function




Logistic function for classifiers

1. Replace sign(xew) with
something differentiable: e.g.
the logistic(x*w)
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l+e

logistic(z) = 1

P(Y =11X =x) =

X'W



Logistic regression more generally

* Logistic regression when Y not boolean (but still
discrete-valued).

* Nowy &E{y, ... yp} : learn R-1 sets of weights

eXD(wko + 201w Xi)
1+ Zf{ exD(w]O + Zz 1 jZX )

for k<R PY =y, X) =

1
1+ Z —1 eXp(w]O + Zz 1 ]ZX)

for k=R P =yg|X) =



Training Logistic Regression: Maximum
Conditional Likelihood Estimation (MCLE)
* we have Ltraining examples:  {(x1 v1) .. (xF vl

 maximum likelihood estimate for parameters W
WL = arg max P(< XLYyl> o< XEYE > W)

_ Iy
—argmwz}xljlp(< XY > |W)

e maximum conditional likelihood estimate




Training Logistic Regression: MCLE

* Choose parameters W=<w,, ... w > to maximize

conditional likelihood of training data, where

1
1+ exp(wo + X; w; X;)

exp(wg + >; wi X;)
1 + exp(wo + > wi X;)

e TrainingdataD= {(X' Y1), ...(x' vh)}
 Data likelihood = [[P(X. Y w)
[
« Data conditional likelihood = [[P(¥Yx',w)
[

P(Y =0|X,W) =

P(Y =1|X,W) =

_ z z
WyerLe = afng%XHP(Y W, X7)



Expressing Conditional Log Likelihood
(W) = InJ[PYYXE,w) =Y In P(Y! XL W)
[ [

1

P(Y =0|X, W) = 1+ exp(wg + >; w; X;)

exp(wo + > w; X;)

PY = 1|X,W) = 1+ exp(wo + X; wiX;)

(W) = YhnprPy!=1x, w)+ (1 - Yl)»ln PY'=o|x!,W)]

l \
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Expressing Conditional Log Likelihood
(W) = InJ[PYYXE,w) =Y In P(Y! XL W)
[ [

1

P(Y =0|X, W) = 1+ exp(wg + >; w; X;)

exp(wo + > w; X;)
1 + exp(wo + X w; X;)

P(Y =1|X,W) =

L(W)

SinPy!=11xLw)+ Q@ -vHInpP! =0/ x\, w)]
[

P(Y!=1|x!
S Itin PEYZ — O:Xl, x% +in P(Y! = o|x!, W)




Expressing Conditional Log Likelihood
(W) =InJ[PYYXE,w) =Y In P(Y! XL, W)
l l ()

1

P(Y =0|X, W) = 1+ exp(wg + >; w; X;)

exp(wo + > w; X;)
1 + exp(wo + X w; X;)

P(Y =1|X,W) =

L(W)

SinPy!=11xLw)+ Q@ -vHInpP! =0/ x\, w)]
[
P(Y!=1|x\ W)

[ [ [
%:[Y In PO = o W) +InP(Y! = o/ xt, W)

= Z[Yl(’wo + zn:win) —In(1 4 exp(wg + zn:szf))]
[ ) 1



Maximizing Conditional Log Likelihood

1

P =0|X, W) = 1 + exp(wo + > w; X;)

exp(wo + > w; X;)
1 + exp(wo + > w; X;)

P(Y =1|X,W) =
(W) = In[[PEYxLw)
[

[ 1 1

Good news: [(W) is concave function of W
Bad news: no closed-form solution to maximize [(W)



Learning Logistic Regression with Gradient
Descent



Learning as optimization: general procedure

Goal: Learn the parameter w of ...
Dataset: D={(x,y,),....(x,, ¥,)}
Write down a loss function

— Lossp(w) = ....

Set w to minimize Loss
— Usually we use numeric methods to find the optimum

— i.e., gradient descent: repeatedly take a small step in the direction of
the gradient



Gradient descent
To find argmin,_ f(x):

* Start with x,
* Fort=1....

* Xeop = X - A (X)) [ [/
where A is small ] l'




Pros and cons of gradient descent

* Simple and often quite effective on ML tasks
* Only applies to smooth functions (differentiable)
* Might find a local minimum, rather than a global one

J(04,6,)




Pros and cons of gradient descent

There is only one local optimum if the function is convex

S | .‘.I'I \ ‘ l “ :|A.v‘.:



Gradient Descent:

Batch gradient: use error Ep(w)over entire training set D
Do until satisfied:

1. Compute the gradient VEp(w) = o B
0 n

2. Update the vector of parameters: W <— W — nV Ep(w)

Stochastic gradient: use error E;(w) over single examples d € D
Do until satisfied:

1. Choose (with replacement) a random training example d € D
aEd(W) aEd(W>
owy  Ow,

3. Update the vector of parameters: w <— w — nV Ey(w)

2. Compute the gradient just for d: VE;(w) =

Stochastic approximates Batch arbitrarily closelyas 1) — 0
Stochastic can be much faster when D is very large
Intermediate approach: use error over subsets of D



Maximize Conditional Log Likelihood: Gradient Ascent

(W) = In[[PYxt,w)
l
= ZYZ(’LUO + zn:wiX,f) —In(1 4 exp(wg + inX,f))
l i i
AWV) _ S~ xivl — Pyl = 1]x1, W))
8107; I



Maximize Conditional Log Likelihood: Gradient Ascent

(W) = In[[PYxt,w)
[

= ZYl(wo + sz‘Xb —In(1 4 exp(wg + ZwZX,f))
[ ) )

v 1 g7
Ol(W) Lol m l (log f) = % f
= %:Xi(y — Pyl =11x",w)) () = o f

8107;

Gradient ascent algorithm: iterate until change < ¢
For all i, repeat

wi —w; + 0y X[V - P(Y! = 1|x", W)
[




MAP Estimation with Regularization



That’s all for M(C)LE. How about MAP?

MAP estimate

W «— arg max In P(W) HP(Yl|Xl, W)
[

One common approach is to define priors on W
— Normal distribution, zero mean, identity covariance

Helps avoid very large weights and overfitting

let’s assume Gaussian prior: W ~ N(0, o?l) = 1/Z (W)
(where Z is a constant)



MLE vs MAP

e Maximum conditional likelihood estimate

W — argmax In [1P(YY X!, W)
[

wi —w; + 0y X,V = P(Y' = 1|X",W))
[

* Maximum a posteriori estimate with prior W~N(0,0?])

W «— arg max In[P(W) HP(YZ|XZ, W)]
l

wi — wi—nAw+n Y X[V - P(Y! = 1|x\, W)
[

A =1/(20?)



MAP Estimates and Regularization
* Maximum a posteriori estimate with prior W~N(0,c?])

W «— arg max In[P(W) HP(YZ|XZ, W)]
l

w; — w;—nhw;+n Y XY - P(Y! = 1]x", W)
1 [

called a “regularization” term

* helps reduce overfitting, especially when training data is sparse

* keep weights nearer to zero (if P(W) is zero mean Gaussian prior), or
whatever the prior suggests

* used very frequently in Logistic Regression




The Bottom Line

e Consider learning f: X 2 Y, where
e X is a vector of real-valued features, < X, ... X_ >
e Y is boolean

e assume all X, are conditionally independent given Y
e model P(X. | Y =vy,) as Gaussian N(uw,,,0;)
e model P(Y) as Bernoulli ()

e Then P(Y|X) is of this form, and we can directly estimate W

1

P(Y = 1|X =< X1,..Xn >) =
| " 1 4+ exp(wg + >, w; X;)



Generative vs. Discriminative Classifier



Generative vs. Discriminative Classifiers

Training classifiers involves estimating f: X 2 Y, or P(Y|X)

Generative classifiers (e.g., Naive Bayes)
e Assume some functional form for P(X|Y), P(X) (i.e., P(X,Y))

e Estimate parameters of P(X]|Y), P(X) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

- Find @ = argmax , M, Pr(y, x| 0)
- Different assumptions about generative process for the
data: Pr(X,Y), priors on 0,...

Discriminative classifiers (e.g., Logistic regression)
e Assume some functional form for P(Y|X)
e Estimate parameters of P(Y|X) directly from training data

- Find @ = argmax , M, Pr(y;|x,,0)
- Different assumptions about conditional probability:
Pr(Y|X), priorson 6, ...




Use Naive Bayes or Logisitic Regression?

Consider
e Restrictiveness of modeling assumptions

* Rate of convergence (in amount of training data) toward
asymptotic hypothesis



Naive Bayes vs Logistic Regression
Consider Y boolean, X. continuous, X=<X, ... X >

Number of parameters:

* NB:4n +1 (3n+1 if we assume 0,=0))
1

e LR: n+1 PO = 0L W) = e o + 55 wiX)

P(Y = 1|X,W) = exp(wo + >3 w X;)

1+ exp(wg + >; w; X;)
Estimation method:

* NB parameter estimates are uncoupled
* LR parameter estimates are coupled



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y
2. P(X. | Y=vy,) = N(un,,0:), € not N(w,,0;)

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...
*Both (1) and (2) are satisfied:
*Neither (1) nor (2) is satisfied:

(1) is satisfied, but not (2) :
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[Ng & Jordan, 2002]
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1. X, conditionally independent of X, given Y
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*GNB (assumption 1 only) -- decision surface can be non-linear
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*Both (1) and (2) are satisfied: LR = GNB2 = GNB
*Neither (1) nor (2) is satisfied:

(1) is satisfied, but not (2) :



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y
2. P(X. | Y=vy,) = N(un,,0:), € not N(w,,0;)

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
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LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...
*Both (1) and (2) are satisfied: LR =GNB2 = GNB
*Neither (1) nor (2) is satisfied: LR > GNB2, GNB>GNB2

(1) is satisfied, but not (2) :



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X, conditionally independent of X, given Y
2. P(X. | Y=vy,) = N(un,,0:), € not N(w,,0;)

Consider three learning methods:

*GNB (assumption 1 only) -- decision surface can be non-linear
*GNB2 (assumption 1 and 2) — decision surface linear
LR -- decision surface linear, trained differently

Which method works better if we have infinite training data, and...
*Both (1) and (2) are satisfied: LR =GNB2 = GNB
*Neither (1) nor (2) is satisfied: LR > GNB2, GNB>GNB2

(1) is satisfied, but not (2) : GNB > LR



G.Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

What if we have only finite training data?
They converge at different rates to their asymptotic (oo data) error

Let €4.n refer to expected error of learning algorithm A after n training
examples

Let d be the number of features: <X, ... X >

)

log d
€EGNB.n < €GNB,co + O ( g)

s

€Lin < €ELRoo + O (

So, GNB requires n = O(log d) to converge, but LR requires n = O(d)



pima (continuous) adult (continuous)

0.5 0.5
0.45! 0.45
0.4
goas
0.3
0.25
0.25 20 40 60 %% 10 20 30
solid: NB dashed: LR
liver disorders (continuous)
0.5 - - 05
0.45¢
045 |
C _ 0.4}
2 S
) . @
* 0.35¢}
0.4} |
0.3}
G 20 40 60 0-2% 20

boston (predict if > median price, continuous)
0.45 y y

0.4f

0.35}

error

0.3t

0.25}

%% 20 40 60

sonar (continuous)

120



error

0.5

promoters (discrete) lymphography (discrete)

20 40 60 80 100 "0 50 100
Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ....” Andrew
Ng and Michael Jordan, NIPS 2001.
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Naive Bayes vs. Logistic Regression

The bottom line:
GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because training procedure does not
make assumptions 1 or 2 (though our derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate asymptotic error

And GNB is both more biased (assumptionl) and less (no assumption 2) than LR, so
either might beat the other



Measuring Accuracy of Classifier

* Precision = #(classified as positive AND positive in data)

#(classified as positive)
e.g., how many of the emails classified as “spam” are in fact truly
Ilspam”?

e Recall = #(classified as positive AND positive in data)

#(positive in data)
e.g., how many of the “spam” emails were classified as “spam”?



What you should know:

Logistic regression

— Functional form follows from Naive Bayes assumptions
* For Gaussian Naive Bayes assuming variance o;, = O,
* For discrete-valued Naive Bayes too

— But training procedure picks parameters without making
conditional independence assumption

— MLE training: pick W to maximize P(Y | X, W)
— MAP training: pick W to maximize P(W | X,Y)
* ‘regularization’
* helps reduce overfitting

Gradient ascent/descent
— General approach when closed-form solutions unavailable

Generative vs. Discriminative classifiers



