Hidden Markov Models I

Machine Learning 10-601B
Seyoung Kim

What's wrong with Bayesian networks

- Bayesian networks are very useful for modeling joint distributions
- But they have their limitations:
 - Cannot account for temporal / sequence models
 - DAG's (no self or any other loops)

This is not a valid Bayesian network!

Hidden Markov models

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor

Hidden states: location (on a map)

Hidden Markov models

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor

Hidden states: location (on a map)

- 1. Hidden states generate observations
- 2. Hidden states transition to other hidden states

Examples: Speech processing

Speech processing

Observations: sound signals

Hidden states: parts of speech, words

sil	acht	negen	sil	drie	een
-:1			_:1		
SII	spk	spk	SII	spk	spk

Example: Biological data

Biology

Observations: DNA base pairs

Hidden states: Genes

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCG
ACTTAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGTCTGAAGAA
CAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTG
ACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAG
AAGACCTTGACATGATT

Example: Gambling on dice outcome

- Two dice A and B, both skewed (output model).
- Can either stay with the same die or switch to the second die (transition model).

State transition diagram

- A set of states $S = \{s_1 \dots s_n\}$
 - In each time point we are in exactly one of these states
- A set of possible outputs $\Sigma = {\sigma_1, ..., \sigma_m}$
 - In each time point we emit a symbol $\sigma_{j} \in \Sigma$

- A set of states $S = \{s_1 \dots s_n\}$
 - In each time point we are in exactly one of these states
- A set of possible outputs $\Sigma = {\sigma_1, ..., \sigma_m}$
 - In each time point we emit a symbol $\sigma_{i} \in \Sigma$

States: A A A B B B B B A A

Observations: 12 2112111 2 2

Probabilistic graphical models

States: A Observations: 1

A A A B B B B B B A A 1 2 2 1 1 2 1 1 1 2 2

- A set of states $S=\{s_1 \dots s_n\}$
 - In each time point we are in exactly one of these states
- A set of possible outputs $\Sigma = {\sigma_1, ..., \sigma_m}$
 - In each time point we emit a symbol $\sigma_i \in \Sigma$
- Random variables
 - States at each time point $Q = \{q_1, ..., q_T\}$
 - Each q_t can take on values from {s₁ ... s_n}
 - Outputs at each time point $O = \{o_1, ..., o_T\}$
 - Each o_t can take on values from Σ

- Parameters of the model
 - $\Pi_i = {\pi_1, ..., \pi_n}$: initial state probabilities $P(q_1 = s_i)$
 - the probability that we start at state s_i, i=1,...,n
 - A transition probability model, $P(q_t = s_i | q_{t-1} = s_i)$
 - nxn matrix of transition probabilities
 - An emission probability model, $p(o_t = \sigma_i | q_t = s_i)$
 - nxm matrix of emission probabilities

The joint probability of (Q,O) is defined as

The joint probability of (Q,O) is defined as

$$P(Q,O) = p(q_1)p(o_1 \mid q_1) \prod_{t=2}^{T} p(q_t \mid q_{t-1})p(o_t \mid q_t)$$
Initial probability
$$\text{transition emission} \\ \text{probability probability}$$

An important aspect of this definitions is the Markov property: q_{t+1} is conditionally independent of q_{t-1} (and any earlier time points) given q_t

More formally
$$P(q_{t+1} = s_i | q_t = s_j) = P(q_{t+1} = s_i | q_t = s_j, q_{t-1} = s_j)$$

What can we ask when using a HMM?

A few examples:

- "Which die is currently being used?"
- "What is the probability of a 6 in the next role?"
- "What is the probability of 6 in any of the next 3 roles?"

Inference in HMMs

- Computing P(Q) and P(q_t = s_i)
 - If we cannot look at observations
- Computing P(Q | O) and P(q_t = s_i | O)
 - When we have observation and care about the last state only
- Computing argmax_OP(Q | O)
 - When we care about the entire path

Which die is currently being used?

- We played *t* rounds so far
- We want to determine P(q_t = A)
- Let's assume for now that we cannot observe any outputs (we are blind folded)
- How can we compute this?

$P(q_t = A)$?

 Simple answer: Consider "all" paths that end in A. For each such path Q, let's determine P(Q)

$$Q = q_{1}, ... q_{t-1}, A$$

$$P(Q) = P(q_{1}, ... q_{t-1}, A) = P(A \mid q_{1}, ... q_{t-1}) P(q_{1}, ... q_{t-1})$$

$$= P(A \mid q_{t-1}) P(q_{1}, ... q_{t-1})$$

$$= P(A \mid q_{t-1}) ... P(q_{2} \mid q_{1}) P(q_{1})$$
Markov property!

0.8

Initial probability

A

0.2

$P(q_t = A)$?

- Simple answer:
 - 1. Let's determine P(Q) where Q is any path that ends in A

$$Q = q_{1}, ... q_{t-1}, A$$

$$P(Q) = P(q_{1}, ... q_{t-1}, A)$$

$$= P(A | q_{1}, ... q_{t-1}) P(q_{1}, ... q_{t-1})$$

$$= P(A | q_{t-1}) P(q_{1}, ... q_{t-1})$$

$$= P(A | q_{t-1}) ... P(q_{2} | q_{1}) P(q_{1})$$

2.
$$P(q_t = A) = \Sigma P(Q)$$

where the sum is over all sets of t states that end in A

$P(q_t = A)$?

- Simple answer:
 - 1. Let's determine P(Q) where Q is any path that ends in A

$$Q = q_{1}, ... q_{t-1}, A$$

$$P(Q) = P(q_{1}, ... q_{t-1}, A)$$

$$= P(A | q_{1}, ... q_{t-1}) P(q_{1}, ... q_{t-1})$$

$$= P(A | q_{t-1}) P(q_{1}, ... q_{t-1})$$

$$= P(A | q_{t-1}) ... P(q_{2} | q_{1}) P(q_{1})$$

2. $P(q_t = A) = \Sigma P(Q)$

where the sum is over all sets of t states that end in A

Q: How many sets Q are there?

A: A lot! (2^{t-1})

Not a feasible solution

$P(q_t = A)$, the smart way

- Let's define p_t(i) as the probability of being in state i at time t: p_t(i)
 = p(q_t = s_i)
- We can determine p_t(i) by induction
 - 1. $p_1(i) = \Pi_i$
 - 2. $p_t(i) = ?$

$P(q_t = A)$, the smart way

- Let's define $p_t(i)$ = probability state i at time $t = p(q_t = s_i)$
- We can determine p_t(i) by induction

1.
$$p_1(i) = \Pi_i$$

2.
$$p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)$$

$P(q_t = A)$, the smart way

- Lets define $p_t(i)$ = probability state i at time $t = p(q_t = s_i)$
- We can determine p_t(i) by induction

1.
$$p_1(i) = \Pi_i$$

2.
$$p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)$$

This type of computation is called dynamic programming

Complexity: O(n²*t)

Time / state	t1	t2	t3	
s1	.3			
s2	.7		•	ightharpoons

Number of states in our HMM

Inference in HMMs

• Computing P(Q) and $P(q_t = s_i)$

• Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$

Computing argmax_QP(Q)

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can.

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

Does observing the sequence

5, 6, 4, 5, 6, 6

Change our belief about the state?

When outputs are observed

• We want to compute $P(q_t = A \mid O_1 ... O_t)$

Observed

$P(q_t = A | O)$ when outputs are observed

- We want to compute $P(q_t = A \mid O_1 ... O_t)$
- Let's start with a simpler question. Given a sequence of states Q, what is $P(Q \mid O_1 ... O_t) = P(Q \mid O)$?
 - It is pretty simple to move from P(Q) to $P(q_t = A)$

Observed

$P(q_{t} = A | O)$ when outputs are observed

- We want to compute $P(q_t = A \mid O_1 ... O_t)$
- Let's start with a simpler question. Given a sequence of states Q, what is $P(Q \mid O_1 ... O_t) = P(Q \mid O)$?
 - It is pretty simple to move from P(Q) to $P(q_t = A)$
 - In some cases P(Q) is the more important question
 - Speech processing
 - NLP

P(Q | O)

• We can use Bayes rule:

$$P(Q|O) = \frac{P(O|Q)P(Q)}{P(O)}$$

Easy, $P(O \mid Q) = P(o_1 \mid q_1) P(o_2 \mid q_2) ... P(o_t \mid q_t)$

P(Q | O)

We can use Bayes rule:

$$P(Q|O) = \frac{P(O|Q)P(Q)}{P(O)}$$

Easy, $P(Q) = P(q_1) P(q_2 | q_1) ... P(q_t | q_{t-1})$

P(Q | O)

We can use Bayes rule:

P(O)

- What is the probability of seeing a set of observations:
 - An important question in it own rights, for example classification using two HMMs $\rm H_1$ and $\rm H_2$
 - Compute $P(O|H_1)$ and $P(O|H_1)$, classify to the model with higher probability

P(O)

- Define $\alpha_t(i) = P(o_1, o_2, ..., o_t \land q_t = s_i)$
- $\alpha_t(i)$ is the probability that we:
 - 1. Observe o₁, o₂ ..., o_t
 - 2. End up at state i

How do we compute α_{t} (i)?

When outputs are observed

- We want to compute $P(q_t = A \mid O_1 ... O_t)$
- For ease of writing we will use the following notations (commonly used in the literature)

Computing $\alpha_t(i)$

• $\alpha_1(i) = P(o_1 \land q_1 = i) = P(o_1 \mid q_1 = s_i)\Pi_i$

We must be at a state in time t chain rule

Markov property

Computing $\alpha_{+}(i)$

•
$$\alpha_1(i) = P(o_1 \land q_1 = i) = P(o_1 \mid q_1 = s_i) \Pi_1$$

We must be at a state in time t

$$\alpha_{t+1}(i) = P(O_1 \dots O_{t+1} \land q_{t+1} = s_i) = \frac{1}{2}$$
 chain rule
$$\sum_{j} P(O_1 \dots O_t \land q_t = s_j) \land O_{t+1} \land q_t = s_i$$
 chain rule
$$\sum_{j} P(O_{t+1} \land q_{t+1} = s_i \mid O_1 \dots O_t \land q_t = s_j) P(O_1 \dots O_t \land q_t = s_j) = \frac{1}{2}$$
 Markov property
$$\sum_{j} P(O_{t+1} \land q_{t+1} = s_i \mid O_1 \dots O_t \land q_t = s_j) \alpha_t(j) = \frac{1}{2}$$

$$\sum_{j} P(O_{t+1} \mid q_{t+1} = s_i) P(q_{t+1} = s_i \mid q_t = s_j) \alpha_t(j) = \frac{1}{2}$$

$$\sum_{j} P(O_{t+1} \mid q_{t+1} = s_i) P(q_{t+1} = s_i \mid q_t = s_j) \alpha_t(j) = \frac{1}{2}$$

$$\sum_{j} P(O_{t+1} \mid q_{t+1} = s_i) P(q_{t+1} = s_i \mid q_t = s_j) \alpha_t(j) = \frac{1}{2}$$

Example: Computing $\alpha_3(B)$

• We observed 2,3,6

$$\alpha_1(A) = P(2 \land q_1 = A) = P(2 \mid q_1 = A)\Pi_A = .2*.7 = .14, \alpha_1(B) = .1*.3 = .03$$

$$\alpha_2(A) = \sum_{j=A,,B} b_A(3) a_{j,A} \alpha_1(j) = .2*.8*.14 + .2*.2*.03 = 0.0236, \alpha_2(B) = 0.0052$$

$$\alpha_3(B) = \sum_{j=A,,B} b_B(6) a_{j,B} \alpha_2(j) = .3*.2*.0236 + .3*.8*.0052 = 0.00264$$

$$\Pi_{\rm A}$$
=0.7 $\Pi_{\rm b}$ =0.3

>	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

Where we are

- We want to compute P(Q | O)
- For this, we only need to compute P(O)
- We know how to compute $\alpha_{t}(i)$

From now its easy

$$\alpha_{t}(i) = P(o_{1}, o_{2} ..., o_{t} \land q_{t} = s_{i})$$
so
$$P(O) = P(o_{1}, o_{2} ..., o_{t}) = \sum_{i} P(o_{1}, o_{2} ..., o_{t} \land q_{t} = s_{i}) = \sum_{i} \alpha_{t}(i)$$
note that
$$p(q_{t} = s_{i} \mid o_{1}, o_{2} ..., o_{t}) = \frac{\alpha_{t}(i)}{\sum_{j} \alpha_{t}(j)}$$

Complexity

- How long does it take to compute P(Q | O)?
 - P(Q): O(n)
 - P(O|Q): O(n)
 - $P(O): O(n^2t)$

Inference in HMMs

• Computing P(Q) and $P(q_t = s_i)$

• Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$

Computing argmax_OP(Q)

Most probable path

- We are almost done ...
- One final question remains
 How do we find the most probable path, that is Q* such that
 P(Q* | O) = argmax_OP(Q|O)?
- This is an important path
 - The words in speech processing
 - The set of genes in the genome etc.

Example

 What is the most probable set of states leading to the sequence:

Π_{A} =0.7	,
Π_b =0.3	

٧	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

Most probable path

$$\arg \max_{Q} P(Q \mid O) = \arg \max_{Q} \frac{P(O \mid Q)P(Q)}{P(O)}$$
$$= \arg \max_{Q} P(O \mid Q)P(Q)$$

We will use the following definition:

$$\delta_{t}(i) = \max_{q_{1}...q_{t-1}} p(q_{1}...q_{t-1} \land q_{t} = s_{i} \land O_{1}...O_{t})$$

In other words we are interested in the most likely path from 1 to t that:

- 1. Ends in S_i
- 2. Produces outputs O₁ ... O_t

Computing $\delta_t(i)$

$$\delta_{t}(i) = \max_{q_{1}...q_{t-1}} p(q_{1}...q_{t-1} \land q_{t} = s_{i} \land O_{1}...O_{t})$$

Initialization at t=1

$$\delta_{1}(i) = p(q_{1} = s_{i} \wedge O_{1})$$

$$= p(q_{1} = s_{i})p(O_{1} | q_{1} = s_{i})$$

$$= \pi_{i}b_{i}(O_{1})$$

Q: Given $\delta_t(i)$, how can we compute $\delta_{t+1}(i)$?

A: To get from $\delta_t(i)$ to $\delta_{t+1}(i)$ we need to

- 1. Add an emission for time t+1 (O_{t+1})
- 2. Transition to state s_i

$$\begin{split} \delta_{t+1}(i) &= \max_{q_1 \dots q_t} p(q_1 \dots q_t \land q_{t+1} = s_i \land O_1 \dots O_{t+1}) \\ &= \max_{j} \delta_t(j) p(q_{t+1} = s_i \mid q_t = s_j) p(O_{t+1} \mid q_{t+1} = s_i) \\ &= \max_{j} \delta_t(j) a_{j,i} b_i(O_{t+1}) \end{split}$$

The Viterbi algorithm

$$\delta_{t+1}(i) = \max_{q_1 \dots q_t} p(q_1 \dots q_t \land q_{t+1} = s_i \land O_1 \dots O_{t+1})$$

$$= \max_{j} \delta_t(j) p(q_{t+1} = s_i \mid q_t = s_j) p(O_{t+1} \mid q_{t+1} = s_i)$$

$$= \max_{j} \delta_t(j) a_{j,i} b_i(O_{t+1})$$

- Once again we use dynamic programming for solving $\delta_t(i)$
- Once we have $\delta_t(i)$, we can solve for our P(Q*|O) by:

$$P(Q^* \mid O) = argmax_Q P(Q \mid O) =$$

$$path defined by argmax_j \delta_t(j),$$

Inference in HMMs

• Computing P(Q) and $P(q_t = s_i)$

• Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$

Computing argmax_QP(Q)

What you should know

- Why HMMs? Which applications are suitable?
- Inference in HMMs
 - No observations
 - Probability of next state w. observations
 - Maximum scoring path (Viterbi)