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What’s wrong with Bayesian networks

e Bayesian networks are very useful for modeling joint
distributions

* But they have their limitations:
- Cannot account for temporal / sequence models

® ®

Bayesian network!
Y v\/

- DAG’s (no self or any other loops)

This is not a valid




Hidden Markov models

e Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor

Hidden states: location (on a map)



Hidden Markov models

 Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor 5
gHidden states: location (on a map)

1. Hidden states generate observations

2. Hidden states transition to other hidden states



Examples: Speech processing

Speech processing
Observations: sound signals
Hidden states: parts of speech, words

sil acht negen sil drie £en

sil spk spk sil spk spk




Example: Biological data

Biology
Observations: DNA base pairs

Hidden states: Genes o[ r———
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Example: Gambling on dice outcome

 Two dice A and B, both skewed (output model).
* (Can either stay with the same die or switch to the second die

(transition model).
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A Hidden Markov Model

* AsetofstatesS={s;..s,}

— In each time point we are in exactly one of these states

* Aset of possible outputs 2={o0, ..., 0.}
— In each time point we emit a symbol o,&X

State transition diagram
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A Hidden Markov Model

* AsetofstatesS={s;..s,}

— In each time point we are in exactly one of these states

* Aset of possible outputs 2={o0, ..., 0.}
— In each time point we emit a symbol o,&X

States: AAABBBBBBAA
Observations: 12211211122

State transition diagram
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A Hidden Markov Model

o . States: AAABBBBBBAA
* Probabilistic graphical models  observations: 12211211122

State transition diagram 0.8
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A Hidden Markov Model

* Aset of states S={s, ... s}
— In each time point we are in exactly one of these states

* Aset of possible outputs 2={o0, ..., 0.}
— In each time point we emit a symbol o,&X

* Random variables
— States at each time point Q ={qy, ..., 9+}
* Each g, can take on values from {s, ... s,.}
— Outputs at each time point O = {0, ..., 07}

* Each o, can take on values from X
State transition diagram
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A Hidden Markov Model

Parameters of the model
— IIL = {m, ...,  }: initial state probabilities P(q,=s))
* the probability that we start at state s; i=1,...,n
— A transition probability model, P(q, =5, | 0, = sj)
* nxn matrix of transition probabilities
— An emission probability model, p(o, = o; |q, = s;)
* nxm matrix of emission probabilities

0.8<\ 0.2
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A Hidden Markov Model
* The joint probability of (Q,0) is defined as

P(0.0) = p(a)] | p(g, 14,-)p(0,14,)

7

Initial probability transition emission

probability  probability



A Hidden Markov Model
* The joint probability of (Q,0) is defined as

P(Q.,0) = p(q,) p(o, |q1)1_[p(qt lq,.)p(o, 1q,)

7 2] |

Initial probability transition  emission
probability  probability

An important aspect of this definitions is the Markov property:

d..; is conditionally independent of g, , (and any earlier time points)
given @,

More formally P(q,,; =s; | 9,=5) =P(ay,1=5; | a,=5;,0:1=5)
YT



What can we ask when using a HMM?

* A few examples:
— “Which die is currently being used?”
— “What is the probability of a 6 in the next role?”
— “What is the probability of 6 in any of the next 3 roles?”
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Inference in HMMs

* Computing P(Q) and P(q, =s))

- If we cannot look at observations
* Computing P(Q | O) and P(q,=s, | O)

- When we have observation and care about the last state only
* Computing argmax,P(Q | O)

- When we care about the entire path



Which die is currently being used?

 We played t rounds so far
* We want to determine P(q, = A)

* Let’s assume for now that we cannot observe any outputs (we
are blind folded)

* How can we compute this?
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P(q, = A)>

* Simple answer: Consider “all” paths that end in A. For each
such path Q, let’s determine P(Q)

Q=qy, ... 0y A
P(Q) =P(qy, --- 9.1, A) =P(A | qy, --- A1) P(ay, - Oy y)
= P(A | Aeq) Pldy, - Ae)
A | Qt 1) - Pla, | q;) P(a,)
Markov property!

/
Initial probability @



P(q.=A)?

* Simple answer:
1. Let’s determine P(Q) where Q is any path that ends in A
Q=0 - Q1) A
P(Q) = P(qy, ... Ay, A)
=P(A | 4y, - Gry) P(ay, - Gpy)
=P(A | duq) P(ay, ... yy)
=P(A | q.4) - P(a, | a;) P(ay)

2.P(g,=A)=2P(Q)

where the sum is over all sets of t states
thatend in A



P(q.=A)?

* Simple answer:

1. Let’s determine P(Q) where Q is any path that ends in A

Q=0 ... Opyy A

P(Q) = P(qy, ... Ay, A)

=P(A | 4y, - Gry) P(ay, - Gpy)
=P(A | duq) P(ay, ... yy)
=P(A | q.4) - P(a, | a;) P(ay)

2.P(g,=A)=2P(Q)

where the sum is over all sets of t states
thatend in A

Q: How many sets Q are
there?

A: A lot! (2+2)

Not a feasible solution



P(qt = A), the smart way

Let’s define p,(i) as the probability of being in state i at time t: p,(i)
=pl(g,=s)

We can determine p,(i) by induction

1. p,(i) = I1,

2.pli)="7



P(qt = A), the smart way

* Let’s define p,(i) = probability state i at time t = p(q, = s,)
* We can determine p,(i) by induction

1. p,(i) = IL

2. p(i) =2 pla, =s; | dpq =5))P4(i)



P(qt = A), the smart way

* Lets define p,(i) = probability state i at time t = p(q, = s)
* We can determine p,(i) by induction

1. p,(i) = IL

2. p(i) =2 pla, =s; | dpq =5)P4(i)

Time/ |11
This type of computation is called state
dynamic programming s1 3
Complexity: O(n?*t) s2 7

Number of states in our HMM



Inference in HMMs
* Computing P(Q) and P(q, =s)) \/
* Computing P(Q | O) and P(q,=s, | O)

* Computing argmax,P(Q)



But what if we observe outputs?

e So far, we assumed that we could not observe the outputs

In reality, we almost always can.

P(v |A)

P(v [B)
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But what if we observe outputs?

e So far, we assumed that we could not observe the outputs

* In reality, we almost alwavs can
Does observing the sequence

5,6,4,5,6,6

P(vIA) |P(vB)

Change our belief about the state?
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When outputs are observed

* We want to compute P(q,=A | O, ... O,)

O~ -

?
a3

Observed




P(g, = A| O) when outputs are observed

* We want to compute P(q,=A | O, ... O,)

* Let’s start with a simpler question. Given a sequence of states
Q, whatisP(Q | O, ...0,)=P(Q | O)?

- It is pretty simple to move from P(Q) to P(q, = A)

?
ql q2 q3 qT

Observed




P(g, = A| O) when outputs are observed

* We want to compute P(q,=A | O, ... O,)

* Let’s start with a simpler question. Given a sequence of states
Q, whatisP(Q | O, ...0,)=P(Q | O)?

- It is pretty simple to move from P(Q) to P(q, = A)
- In some cases P(Q) is the more important question

- Speech processing
- NLP



P(Q | O)

 We can use Bayes rule:

PO 19)P(Q)

PO) = —~ 0)

Easy, P(O | Q) = P(01 | q1) P(Oz | qz) P(Ot | qt)



P(Q | O)

 We can use Bayes rule:

PO19)P(Q)

P(QO) = P

Easy, P(Q) - P(ql) P(qz | q1) P(qt | qt-l)



P(Q | O)

 We can use Bayes rule:

PO19)P(Q)

PO = —— 0)

/

Hard!



P(O)

What is the probability of seeing a set of observations:

— An important question in it own rights, for example classification using
two HMMs H; and H,

* Compute P(O|H,) and P(O|H,), classify to the model with higher
probability



P(O)

* Define a,(i) = P(o,, 0,..., 0, A q,=5)
* o,li) is the probability that we:

1. Observe o0,, 0, ..., O,

2. End up at state i

How do we compute o (i)?



When outputs are observed

* We want to compute P(q,=A | O, ... O,)

* For ease of writing we will use the following notations
(commonly used in the literature)

_ a',i = P(qt =5 | Qi1 = Sj)

Transition
probability

Emission
probability



Computing o.(i)

* oyli)=P(o; A g;=1i)=P(oy | q,=5)I1,

We must be at a state in time t

chain rule

/

Marw



Computing o.(i)

a,(i) =Plo; A gq,=1i)=P(o; | g;=5)1],
We must be at a state in time t

O{Hl(i) = P(Ol "'Ot+1 A qi1 = Si) = chain rule

EP(Ol...Ot NG, =S, AOHW

EP(OHIAqu S‘O OAQZ_S)P(O OAqt_S)_

Markov propert
EP(OM NGy =5,10,...0,nq, =5,)a,(j) =
J

EP(OHI |qt+1 = Si)P(QHI = Si |Qt =Sj)at(j) =

Eb (0,.)a,.0,())



Example: Computing o.;(B)

e \We observed 2,3,6

o, (A)=P(2 A q,=A)=P(2 | g, = A)II, =.2*.7 =14, 0,(B) = .1*.3 = .03

0,(A) = 2, ba(3)a; » 0y ( j)=.2*.8%.14+.2*.2* 03 = 0.0236, a1, (B) = 0.0052

013(B) = =, 5bg(6)a; 5 0y )=.3*.2*.0236+.3*.8*.0052 = 0.00264

P(vIA)

P(v[B)
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Where we are

 We want to compute P(Q | O)
* For this, we only need to compute P(O)
*  We know how to compute o.(i)

From now its easy
OLt(I) = P(Ol’ 0y..., 0, A Q;= Si)
SO
P(O) = P(Ol’ SR Ot) = ZiP(Ol, 0y..) Ot A Gt = Si) = ZiOLt(i)
note that .
a, (1)

p(qt=5i | 04, 0y ..., Ot) = —t~ 7
2 al)

]

P(A | B)=P(A A B)/P(B)



Complexity

 How long does it take to compute P(Q | O)?
— P(Q): O(n)
— P(0[Q): O(n)
— P(0): O(n?t)



Inference in HMMs
* Computing P(Q) and P(q, =s)) \/
 Computing P(Q | 0) and P(g, = s; | O) Vv

* Computing argmax,P(Q)



Most probable path

* We are almost done ...
* One final question remains
How do we find the most probable path, that is Q* such that
P(Q* | O) = argmax,P(Q|0O)?

* Thisis an important path
- The words in speech processing
- The set of genes in the genome etc.



 What is the most probable set of states leading to the

sequence:

Example

1,2,2,5,6,5,1,2,3 7

P(vIA)

P(v[B)
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Most probable path

P(O|Q)P(Q)
P(O)
=arg max , P(O [Q)P(Q)

We will use the following definition:

argmax , P(Q |0) = arg max ,

0,(i) = max p(q,...q,, nq, =5, AO,..0,)

qy--49r-1

In other words we are interested in the most likely
path from 1 to t that:

1. Endsin S,

2. Produces outputs O, ... O,



Computing 9,(i)

0,() = max p(q,...q,, A g, =5; 7 O,..0,)
Initialization att=1

0,(i) = p(q, =5, A O))
=p(q, =5,)p(0, |q, =s,)
=75ibz‘(01)

Q: Given 9,(i), how can we compute 9,,,(i)?
A: To get from 0,(i) to 0,,,(i) we need to
1. Add an emission for time t+1 (O,,,)

2. Transition to state s,
5t+l(i) = ana;( p(Ql Qz‘ A Qt+1 = Si A O]"‘Ot+l)

=mjax 5,(j)p(q,+1 =, |q, = Sj)p(0t+l (G101 =5;)
- max3,(/)a,,b,(0,.)
J

Joi i



The Viterbi algorithm

0,,,()= glagf p(q,...q,nq,,, =5 1O,.0,,)
=m;c_1xc5t(j)p(qt+l =s,1q,=s,)p(O,,,1q,, =5,
=maxo,(j)a; b(0,,))
e Once agair; we use dynamic programming for solving 0,(i)
e Once we have 9,(i), we can solve for our P(Q*|O) by:
P(Q* | O) = argmax,P(Q|O) =

path defined by argmax; O,(j),



Inference in HMMs
* Computing P(Q) and P(q, =s)) \/
 Computing P(Q | 0) and P(g, = s; | O) Vv

* Computing argmax,P(Q) \/



What you should know

* Why HMMs? Which applications are suitable?
* Inference in HMMs

- No observations

- Probability of next state w. observations

- Maximum scoring path (Viterbi)



