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Many of these slides are derived from Tom
Mitchell. Thanks!



Learning of Bayes Nets

Four categories of learning problems
— Graph structure may be known/unknown
— Variable values may be fully observed/partially unobserved

Easy case: learn parameters, when graph structure is known,
and data is fully observed

Interesting case: graph known, data partially known

Gruesome case: graph structure unknown, data partially
unobserved



LEARNING BAYESIAN NETWORK
PARAMETERS WITH KNOWN
STRUCTURE



Learning CPTs from Fully Observed Data

 Example: Consider learning the parameter

 MLE (Max Likelihood Estimate) is
— Zé(—:l 5(fk: =1,a = 7,5 = 1)
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* Remember why?



IMILE estimate of 6,;; from fully observed data

e Maximum likelihood estimate i <

0 «— arg m@ax log P(datald) ,/.\.

 Qur case:
K
P(datal®) = [ P(fx,ak, sk, hig, nk)
k=1
K
P(data|0) = [ P(fr)P(ag)P(sk|frar)P(hg|sk)P(nglsg)
k=1

K
log P(datalf) = > log P(fi)+log P(ay)+l0g P(sg|frar)+10g P(hy|sg)+10g P(nk|sk)
k=1

dlog P(datal|0) _ i dlog P(si|frar)
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Estimate ¢ from partially observed data

C:Q Qllergy
 What if FAHN observed, but not S?
e Can’t calculate MLE

0 — arg max log 11 P(frs ars sis by 1 |6)
k

WHAT TO DO?



Estimate ¢ from partially observed data

Let X be all observed variable values (over all samples)

Let Z be all unobserved variable values @ T
Can’t calculate MLE:
0« argmax log P(X, Z|0) HgadacDe

EM seeks to estimate:
0 «— arg m@ax EZ|X,9[Iog P(X,Z|0)]

— EM guaranteed to find local maximum



EM with Partially Observed Data

@
« EM seeks to estimate: GSinug)

0 < arg m@ax EZ|X,9[Iog P(X, Z|0)] Headache

* here, observed X={F,A,H,N}, unobserved Z={S}, K

samples
K

log P(X, Z|0) = > [log P(fr)+1og P(ag)+10g9 P(s|fraxr)+109 P(hy|sg)+10g P(ng|sg)]
k=1

Epizixplog P(X, Z|0) = ZZP Sk = t| fx, ag, hg, k)
k=1 1=0

[logP(fi)+109 P(ay)+l0g P(sy|frar)+1og P(hg|s,)+109 P(ng|s)]



EM Algorithm

« EM is a general procedure for learning from partially observed
data

« Given observed variables X, unobserved Z (X={F,A,H,N}, Z=
{S}), define
Q(9/|9) = EP(Z|X,9) [log P (X 4 |9/)]

lterate until convergence:

» E Step: Use X and current 6 to calculate P(Z|X,0)

» M Step: Replace current 6 by
6 — arg max Q(0'16)

 Guaranteed to find local maximum.
- Each iteration increases Ep(z|x g)llog P(X, Z 167)]



E Step: Use X, 0, to Calculate P(Z|X,0)

« observed X={F A,H,N}, unobserved Z={S}
* How? Bayesian network inference problem. @ Qllerg)
HeadacDe

P(Sy = 1| fraphing, 0) =

P(Sk = lafkaakahkank) _ P(Sk = l’fkaakahkank)
P(fk,ak,hk,nk) P(Sk =1,fk,ak,hk,nk)+P(Sk =07fkaak7hk>nk)

P(Sy = 1, fraghyng|6)
P(Sy = 1, frarphgpni|0) + P(Si = 0, fraphgpni|0)

P(Sk = 1| fraghgng, 0) =



EM and estimating ¢

slij

observed X = {F, A,H,N}, unobserved Z={S}

E step: Calculate P(Z,|X,; 0) for each training example, k

P(Sy = 1|fyaphpng, 0) = E[sy] = P(Sy = 1, frarhinil0)
’ Plzx;) POk =1, frarhingl|0) + P(S = 0, fraghyny|0)

M step: update all relevant parameters. For example:
0 S L 8(f =1d,ap = 7) Elsg] @ Qllergy

s|ij K . .
Y1 0(fr = 4,0 = 35)

SE L 5(fp=1t,ap =4, s, =1)
Recall MLE was:ts;; = —— : :
slij SE 5(fp =i, a5 = J)




@
EM and estimating

H&adacDe

 More generally, given observed set X, unobserved set Z of
boolean values

E step: Calculate for each training example

the expected value of each unobserved variable
inference algorithm!

M step:
Calculate estimates similar to MLE, but
replacing each count by its expected count
(Y =1) = EzxglY] 6(Y =0) = (1 - EzxolY]D




Using Unlabeled Data to Help Train
Naive Bayes Classifier
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LEARNING BAYESIAN NETWORK
STRUCTURE



Learning Bayesian Network Structure

* Learning a Bayesian network structure: open problem in
general!

— can require lots of data (else high risk of overfitting)
— Can constrain the search space to improve computational efficiency



Learning Bayesian Network Structure

* Learning a Bayesian network structure
— Tree structure

e Restrictive model structure
* Efficient learning and inference algorithms
— A general directed acyclic graph structure
* Very large search space of candidate BN structures
* |nexact method: heuristic search, efficient

* Exact method: dynamic programming, exponential time
complexity



Learning a Tree-structured Bayesian Network

* A key result: Chow-Liu algorithm finds “best” tree-structured
network

— suppose P(X) is true distribution, T(X) is our tree-structured network,
where X =<X1, ... Xn>

— Chow-Liu minimizes Kullback-Leibler divergence:

P(X = k)

KL(P(X) || T(X ZPX k) logT(X:k)



Chow-Liu Algorithm

* Key result: To minimize KL(P | | T), it suffices to find the tree
network T that maximizes the sum of mutual information over
its edges

 Mutual information for an edge between variable A and B:

P(a,b)
= za: zb: P(a,b)log PP

e This works because for tree networks with nodes X = (X; ... X,)

KL(P(X) || T(X)) = ZP (X =k)log };8(( - }8

- —ZIX Pa(X +ZH LX)



Chow-Liu Algorithm

Step 1: For each pair of variables A,B, use data to estimate P(A,B), P(A), P(B)

Step 2: For each pair of variables A,B, calculate mutual information

I(A,B) =Y P(a,b)log P}()S}b()b)

Step 3: Calculate the maximum spanning tree over the set of variables, using
edge weights I(A,B) (given N variables, this costs only O(N?) time)

Step 4: Add arrows to edges to form a directed-acyclic graph by picking an
arbitrary node as root and directing edges outward from the root

Step 5: Learn the CPD’s for this graph



Maximum Spanning Tree Algorithm

* Kruskal’s Algorithm
— Start with the empty graph and add edges one by one
— As the next edge to add, choose one that
* Isnotin graph yet
e Does not introduce a cycle. Has the maximum weight



Chow-Liu algorithm example
Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]



General Bayesian Network Structure Learning

* A naive approach: exhaustive search

— Compute the score of every structure and pick the one with the
highest score

— Exponentially large search space
— Maintaining DAG constraint is challenging

e Heuristic search



Hill Climbing Algorithm

e Start with an initial structure

* Repeat until termination:
— Generate a set of structures by modifying the current structure.
— Compute their scores.

— Pick the one with the highest score and use it as the current model in
the next step.

— Terminate when model score cannot be improved.

e Return the best network.



Search Operators

e Search operators for modifying a structure:
— Add an arc
— Delete an arc
— Reverse an arc

* Note:

— The add-arc and reverse-arc not permitted if results in directed cycles



Search Operators
@\@ ® \17

Add D->B, illegal Reverse B->C




Evaluating Candidate Models

Suppose there are n variables

The number of candidate models at each iteration: O(n?)
We need to compute the score of each of the candidate
models

— This is the most time-consuming step

— Structures of scoring functions can be exploited to simplify the
computation



Problems with Hill Climbing

Local maxima:
All one-edge changes reduced the score, but not optimal yet

Plateaus:
Neighbors have the same score

Solutions:
— Random restart
— TABU-search:
* Keep a list of K most recently visited structures and avoid them
* Avoid plateau
— Simulated annealing



Equivalence Classes

e Bayesian networks with network structures in the same
equivalence class are not distinguishable

 Two network structures are equivalent if
— They have the same skeleton, ignoring edge directions
— They have the same set of collider nodes

4 N
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Theorem 1 (Verma & Pearl 1990)

 Two DAGs are equivalent if and only if they have the same
skeletons and the same v-structures

KW,
SRS




Overfitting and Structure Learning

* Asthe network has more edges, the complexity of model
increases and the model is more likely to overfit training data

 How to fight overfitting?
— Assume a simpler network structure e.g., tree
— Cross validation
— Minimum description length



Cross Validation

* Holdout validation:

— Split data into training set and validation set
— Parameter estimation based on training set
— Model score: likelihood based on validation set

* Cross validation:
— Split data into k subsets

— Use each subset as validation set and the rest as training set, and
obtains a score

— Total model score: average of the scores for all the cases



Minimum Description Length

* Machine learning is about finding regularities in data
* Regularities should allow us to describe the data concisely
* Find model to minimize

Description length of model + Description length of data

T T

ElogN Negative data log likelihood



Face Modeling/Recognition Using Bayesian
Networks

Face feature finder (separate)

Add Pose switching variable




Speaker Detection with Bayesian Networks

Rehg, et al. 1999

g
g
0
i

Modeling pose with

- @ @ o polytree structure

Naive Bayes

* Visible: Is there a speaker?

* Frontal: O for non-frontal, 1 for

frontal faces

* Speaking: Is the person speaking?

* Skin, Texture, NN: face features Full speaker-detection
system




Bayes Nets — What You Should Know

* Representation

— Bayes nets represent joint distribution as a DAG + Conditional
Distributions

— D-separation lets us decode conditional independence assumptions
* Inference

— NP-hard in general

— For some graphs, closed form inference is feasible

— Variable elimination, stochastic methods
* Learning

— Easy for known graph, fully observed data (MLE’s, MAP est.)

— EM for partly observed data, known graph

— Learning graph structure: Chow-Liu for tree-structured networks

— Hardest when graph unknown, data incompletely observed



