

Bayesian Networks

Machine Learning 10-601B

Seyoung Kim

Many of these slides are derived from Tom
Mitchell. Thanks!

Learning of Bayes Nets

- Four categories of learning problems
 - Graph structure may be **known/unknown**
 - Variable values may be **fully observed/partially unobserved**
- Easy case: learn parameters, when **graph structure is *known*, and data is *fully observed***
- Interesting case: **graph *known*, data *partially known***
- Gruesome case: **graph structure *unknown*, data *partially unobserved***

LEARNING BAYESIAN NETWORK PARAMETERS WITH KNOWN STRUCTURE

Learning CPTs from Fully Observed Data

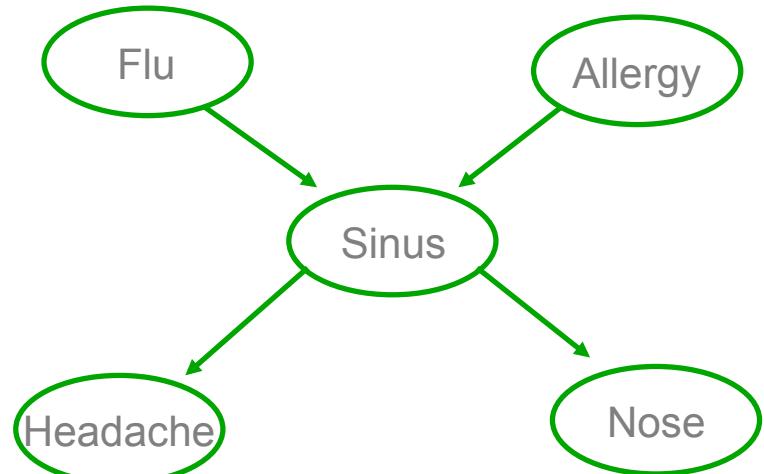
- Example: Consider learning the parameter

$$\theta_{s|ij} \equiv P(S = 1 | F = i, A = j)$$

- MLE (Max Likelihood Estimate) is

$$\theta_{s|ij} = \frac{\sum_{k=1}^K \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^K \delta(f_k = i, a_k = j)}$$

k^{th} training example



- Remember why?

MLE estimate of $\theta_{s|ij}$ from fully observed data

- Maximum likelihood estimate

$$\theta \leftarrow \arg \max_{\theta} \log P(\text{data}|\theta)$$

- Our case:

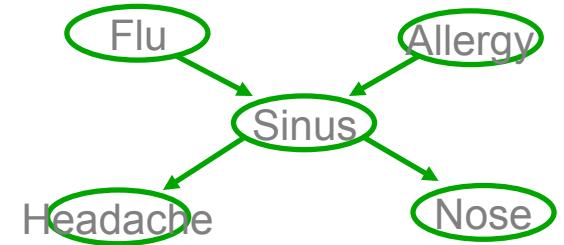
$$P(\text{data}|\theta) = \prod_{k=1}^K P(f_k, a_k, s_k, h_k, n_k)$$

$$P(\text{data}|\theta) = \prod_{k=1}^K P(f_k)P(a_k)P(s_k|f_k a_k)P(h_k|s_k)P(n_k|s_k)$$

$$\log P(\text{data}|\theta) = \sum_{k=1}^K \log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

$$\frac{\partial \log P(\text{data}|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^K \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$

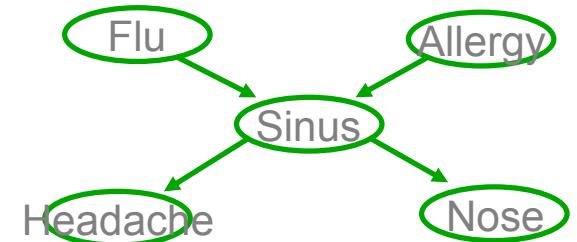
$$\theta_{s|ij} = \frac{\sum_{k=1}^K \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^K \delta(f_k = i, a_k = j)}$$



Estimate θ from partially observed data

- What if FAHN observed, but not S?
- Can't calculate MLE

$$\theta \leftarrow \arg \max_{\theta} \log \prod_k P(f_k, a_k, s_k, h_k, n_k | \theta)$$

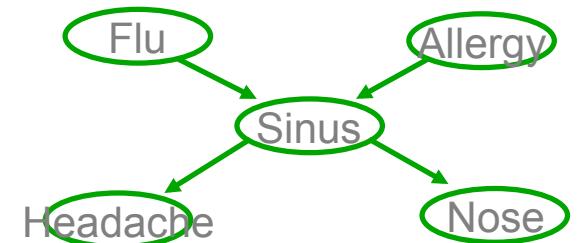


WHAT TO DO?

Estimate θ from partially observed data

- Let X be all observed variable values (over all samples)
- Let Z be all unobserved variable values
- Can't calculate MLE:

$$\theta \leftarrow \arg \max_{\theta} \log P(X, Z | \theta)$$



- EM seeks to estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta} [\log P(X, Z | \theta)]$$

- EM guaranteed to find local maximum

EM with Partially Observed Data

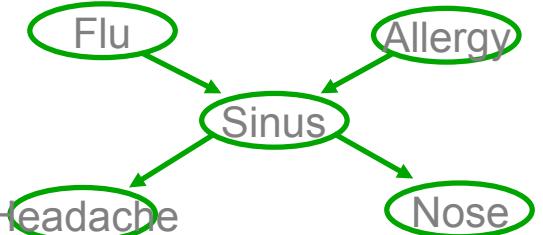
- EM seeks to estimate:

$$\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta} [\log P(X, Z|\theta)]$$

- here, observed $X=\{F, A, H, N\}$, unobserved $Z=\{S\}$, K samples

$$\log P(X, Z|\theta) = \sum_{k=1}^K [\log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)]$$

$$E_{P(Z|X,\theta)} \log P(X, Z|\theta) = \sum_{k=1}^K \sum_{i=0}^1 P(s_k = i | f_k, a_k, h_k, n_k) [\log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)]$$



EM Algorithm

- EM is a general procedure for learning from partially observed data
- Given observed variables X , unobserved Z ($X=\{F,A,H,N\}$, $Z=\{S\}$), define

$$Q(\theta'|\theta) = E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$$

Iterate until convergence:

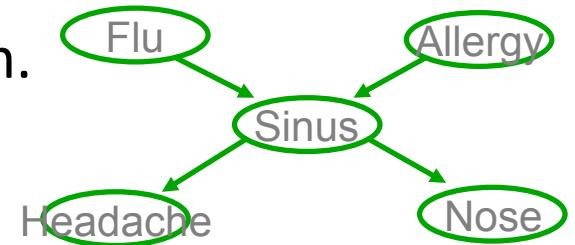
- E Step: Use X and current θ to calculate $P(Z|X,\theta)$
- M Step: Replace current θ by

$$\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$$

- Guaranteed to find local maximum.
- Each iteration increases $E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

E Step: Use X, θ , to Calculate $P(Z|X, \theta)$

- observed $X = \{F, A, H, N\}$, unobserved $Z = \{S\}$
- How? Bayesian network inference problem.



$$P(S_k = 1 | f_k a_k h_k n_k, \theta) =$$

$$\frac{P(S_k = 1, f_k, a_k, h_k, n_k)}{P(f_k, a_k, h_k, n_k)} = \frac{P(S_k = 1, f_k, a_k, h_k, n_k)}{P(S_k = 1, f_k, a_k, h_k, n_k) + P(S_k = 0, f_k, a_k, h_k, n_k)}$$

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

EM and estimating $\theta_{s|ij}$

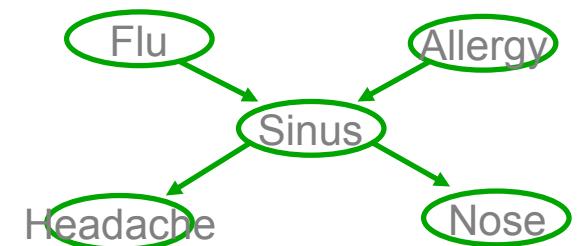
- observed $X = \{F, A, H, N\}$, unobserved $Z = \{S\}$

E step: Calculate $P(Z_k|X_k; \theta)$ for each training example, k

$$P(S_k = 1|f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

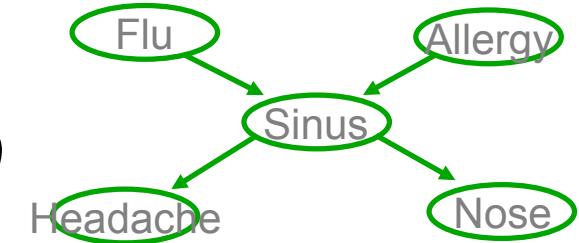
M step: update all relevant parameters. For example:

$$\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^K \delta(f_k = i, a_k = j) E[s_k]}{\sum_{k=1}^K \delta(f_k = i, a_k = j)}$$



Recall MLE was: $\theta_{s|ij} = \frac{\sum_{k=1}^K \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^K \delta(f_k = i, a_k = j)}$

EM and estimating θ



- More generally, given observed set X , unobserved set Z of boolean values

E step: Calculate for each training example

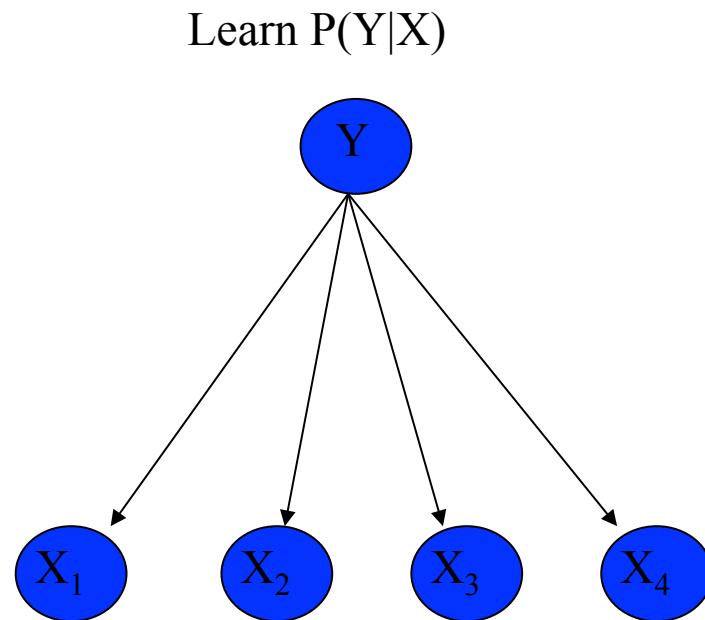
the expected value of each unobserved variable
inference algorithm!

M step:

Calculate estimates similar to MLE, but
replacing each count by its expected count

$$\delta(Y = 1) \rightarrow E_{Z|X,\theta}[Y] \quad \delta(Y = 0) \rightarrow (1 - E_{Z|X,\theta}[Y])$$

Using Unlabeled Data to Help Train Naïve Bayes Classifier



Y	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

LEARNING BAYESIAN NETWORK STRUCTURE

Learning Bayesian Network Structure

- Learning a Bayesian network structure: **open problem in general!**
 - can require lots of data (else high risk of overfitting)
 - Can constrain the search space to improve computational efficiency

Learning Bayesian Network Structure

- Learning a Bayesian network structure
 - Tree structure
 - Restrictive model structure
 - Efficient learning and inference algorithms
 - A general directed acyclic graph structure
 - Very large search space of candidate BN structures
 - Inexact method: heuristic search, efficient
 - Exact method: dynamic programming, exponential time complexity

Learning a Tree-structured Bayesian Network

- A key result: Chow-Liu algorithm finds “best” tree-structured network
 - suppose $P(\mathbf{X})$ is true distribution, $T(\mathbf{X})$ is our tree-structured network, where $\mathbf{X} = \langle X_1, \dots, X_n \rangle$
 - Chow-Liu minimizes Kullback-Leibler divergence:

$$KL(P(\mathbf{X}) \parallel T(\mathbf{X})) \equiv \sum_k P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$

Chow-Liu Algorithm

- Key result: To minimize $KL(P \parallel T)$, it suffices to find the tree network T that maximizes the sum of mutual information over its edges
- Mutual information for an edge between variable A and B:

$$I(A, B) = \sum_a \sum_b P(a, b) \log \frac{P(a, b)}{P(a)P(b)}$$

- This works because for tree networks with nodes $\mathbf{X} \equiv \langle X_1 \dots X_n \rangle$

$$\begin{aligned} KL(P(\mathbf{X}) \parallel T(\mathbf{X})) &\equiv \sum_k P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)} \\ &= - \sum_i I(X_i, Pa(X_i)) + \sum_i H(X_i) - H(X_1 \dots X_n) \end{aligned}$$

Chow-Liu Algorithm

Step 1: For each pair of variables A,B, use data to estimate $P(A,B)$, $P(A)$, $P(B)$

Step 2: For each pair of variables A,B, calculate mutual information

$$I(A, B) = \sum_a \sum_b P(a, b) \log \frac{P(a, b)}{P(a)P(b)}$$

Step 3: Calculate the maximum spanning tree over the set of variables, using edge weights $I(A,B)$ (given N variables, this costs only $O(N^2)$ time)

Step 4: Add arrows to edges to form a directed-acyclic graph by picking an arbitrary node as root and directing edges outward from the root

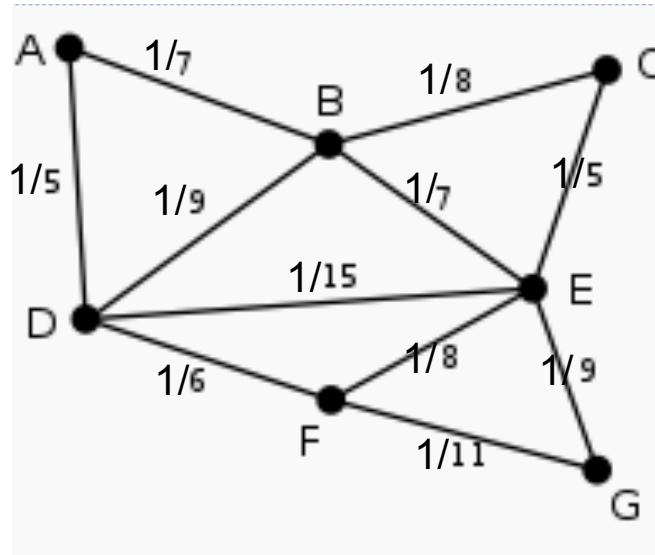
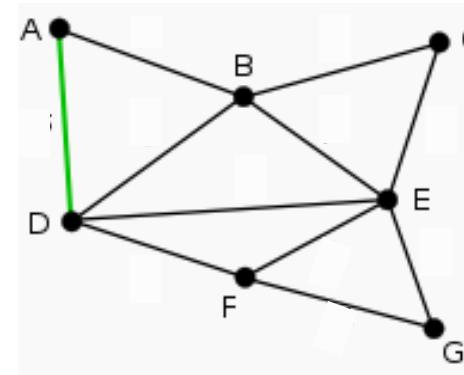
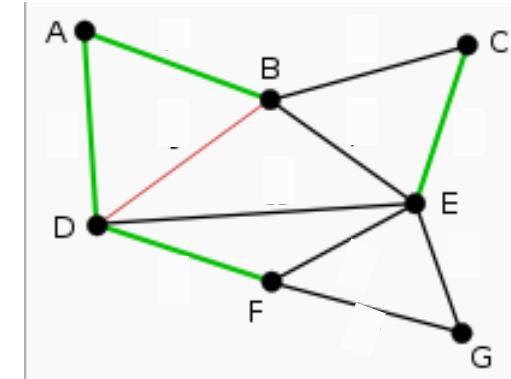
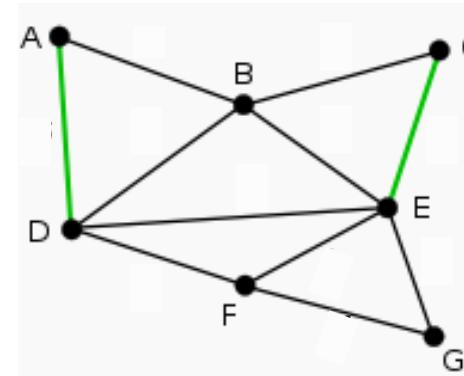
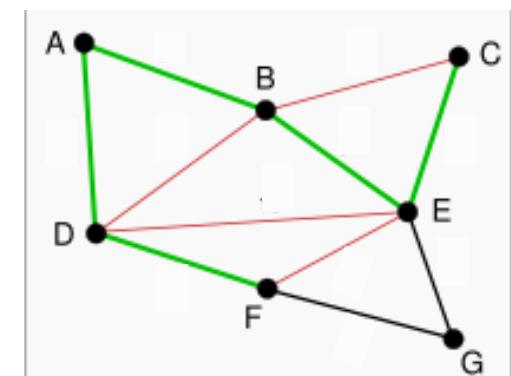
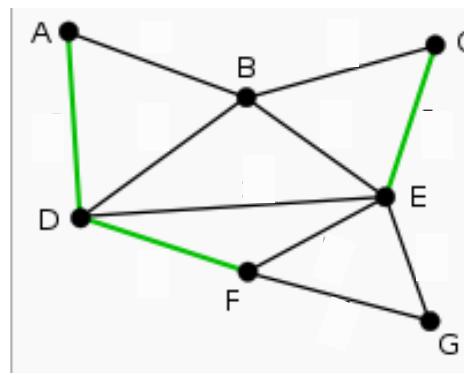
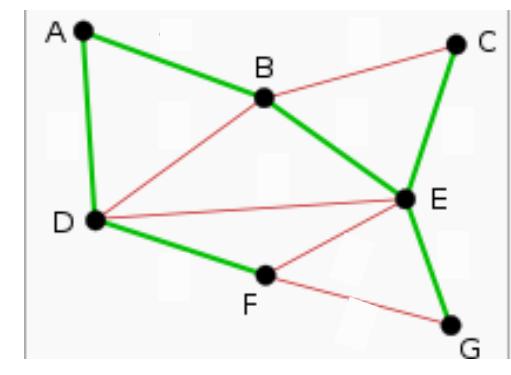
Step 5: Learn the CPD's for this graph

Maximum Spanning Tree Algorithm

- Kruskal's Algorithm
 - Start with the empty graph and add edges one by one
 - As the next edge to add, choose one that
 - Is not in graph yet
 - Does not introduce a cycle. Has the maximum weight

Chow-Liu algorithm example

Greedy Algorithm to find Max-Spanning Tree



[courtesy A. Singh, C. Guestrin]

General Bayesian Network Structure Learning

- A naïve approach: exhaustive search
 - Compute the score of every structure and pick the one with the highest score
 - Exponentially large search space
 - Maintaining DAG constraint is challenging
- Heuristic search

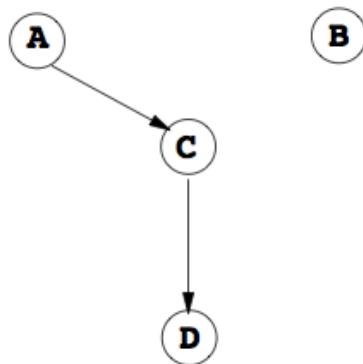
Hill Climbing Algorithm

- Start with an initial structure
- Repeat until termination:
 - Generate a set of structures by modifying the current structure.
 - Compute their scores.
 - Pick the one with the highest score and use it as the current model in the next step.
 - Terminate when model score cannot be improved.
- Return the best network.

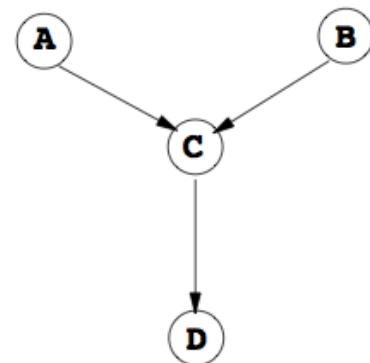
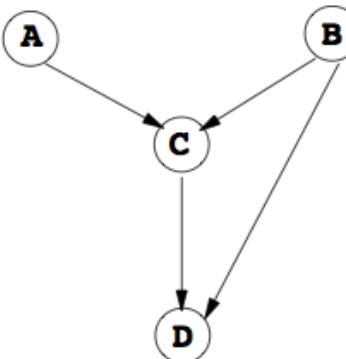
Search Operators

- Search operators for modifying a structure:
 - Add an arc
 - Delete an arc
 - Reverse an arc
- Note:
 - The add-arc and reverse-arc not permitted if results in directed cycles

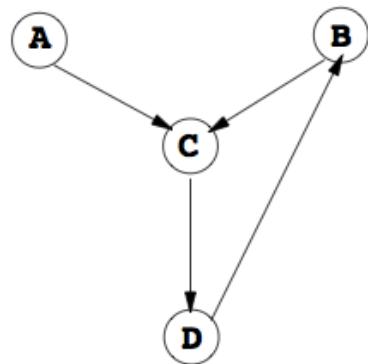
Search Operators



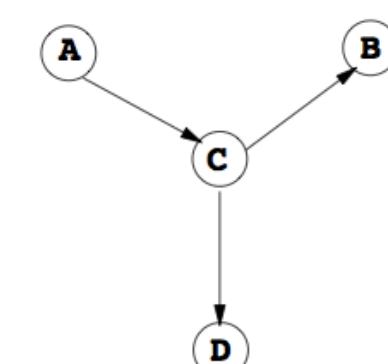
Delete B->C



Add B->D



Add D->B, illegal



Reverse B->C

Evaluating Candidate Models

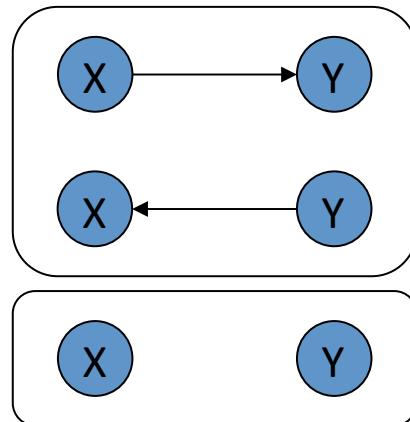
- Suppose there are n variables
- The number of candidate models at each iteration: $O(n^2)$
- We need to compute the score of each of the candidate models
 - This is the most time-consuming step
 - Structures of scoring functions can be exploited to simplify the computation

Problems with Hill Climbing

- Local maxima:
All one-edge changes reduced the score, but not optimal yet
- Plateaus:
Neighbors have the same score
- Solutions:
 - Random restart
 - TABU-search:
 - Keep a list of K most recently visited structures and avoid them
 - Avoid plateau
 - Simulated annealing

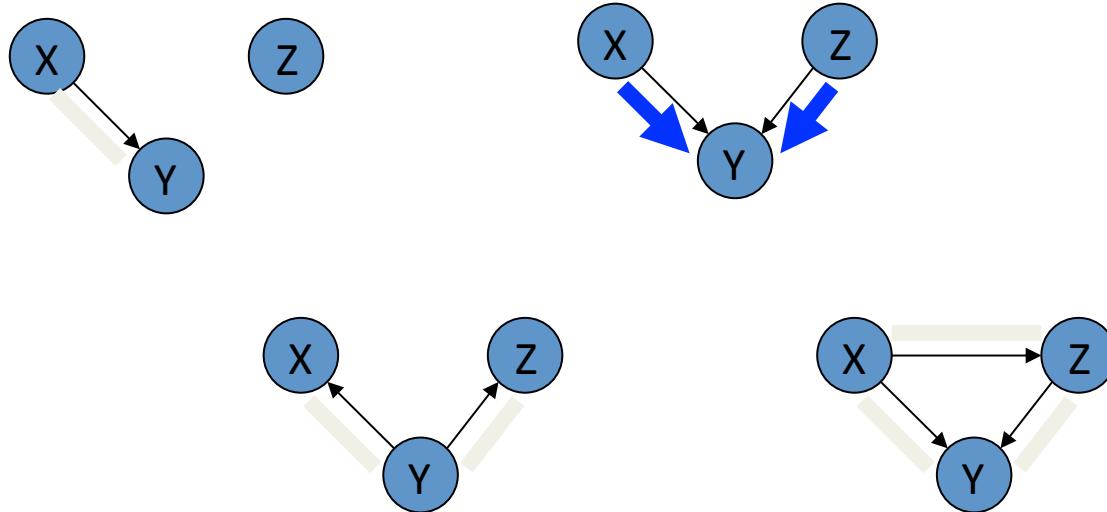
Equivalence Classes

- Bayesian networks with network structures in the same equivalence class are not distinguishable
- Two network structures are equivalent if
 - They have the same skeleton, ignoring edge directions
 - They have the same set of collider nodes



Theorem 1 (Verma & Pearl 1990)

- Two DAGs are equivalent if and only if they have the same **skeletons** and the same **v-structures**



Overfitting and Structure Learning

- As the network has more edges, the complexity of model increases and the model is more likely to overfit training data
- How to fight overfitting?
 - Assume a simpler network structure e.g., tree
 - Cross validation
 - Minimum description length

Cross Validation

- Holdout validation:
 - Split data into training set and validation set
 - Parameter estimation based on training set
 - Model score: likelihood based on validation set
- Cross validation:
 - Split data into k subsets
 - Use each subset as validation set and the rest as training set, and obtains a score
 - Total model score: average of the scores for all the cases

Minimum Description Length

- Machine learning is about finding regularities in data
- Regularities should allow us to describe the data concisely
- Find model to minimize

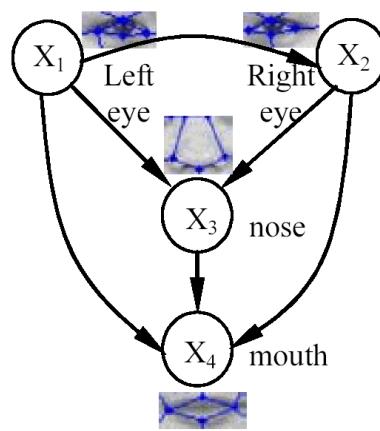
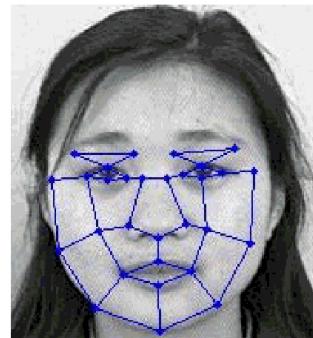
Description length of model + Description length of data

$$\frac{d}{2} \log N$$

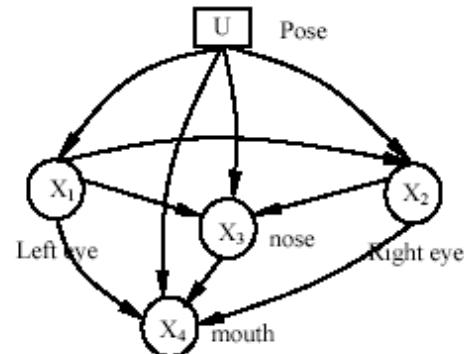
Negative data log likelihood

Face Modeling/Recognition Using Bayesian Networks

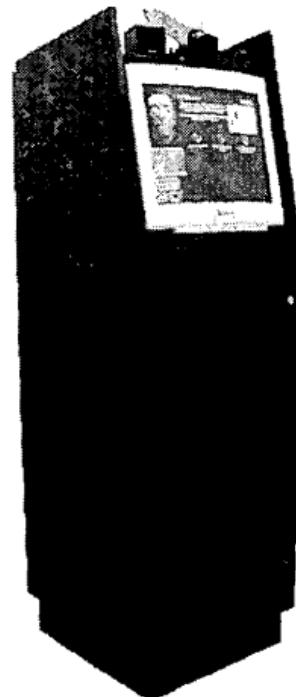
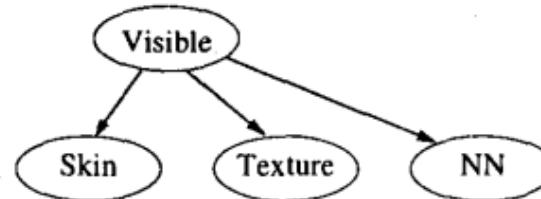
Face feature finder (separate)



Add Pose switching variable

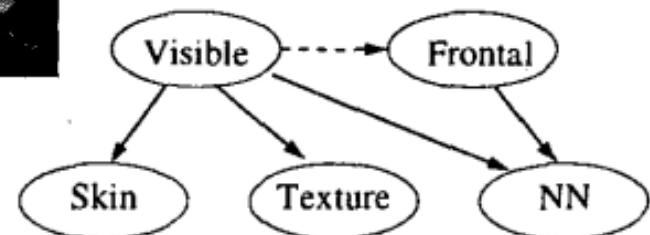


Speaker Detection with Bayesian Networks

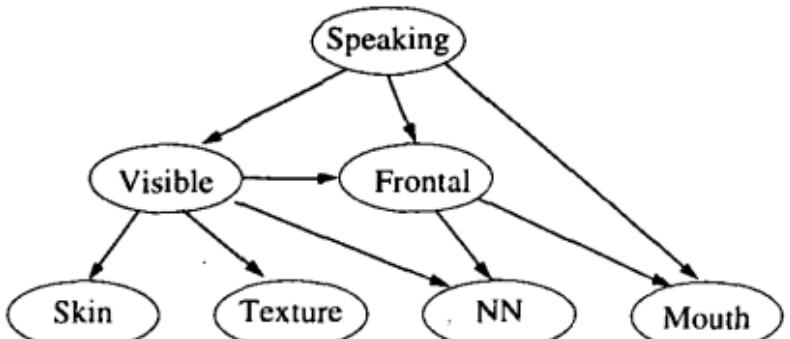


Naïve Bayes

- Visible: Is there a speaker?
- Frontal: 0 for non-frontal, 1 for frontal faces
- Speaking: Is the person speaking?
- Skin, Texture, NN: face features



Modeling pose with polytree structure



Full speaker-detection system

Bayes Nets – What You Should Know

- Representation
 - Bayes nets represent joint distribution as a DAG + Conditional Distributions
 - D-separation lets us decode conditional independence assumptions
- Inference
 - NP-hard in general
 - For some graphs, closed form inference is feasible
 - Variable elimination, stochastic methods
- Learning
 - Easy for known graph, fully observed data (MLE's, MAP est.)
 - EM for partly observed data, known graph
 - Learning graph structure: Chow-Liu for tree-structured networks
 - Hardest when graph unknown, data incompletely observed