

RECITATION 8

HIDDEN MARKOV MODEL

10-601: INTRODUCTION TO MACHINE LEARNING

11/13/2020

1 HMMs

You are given the following training data:

win_C league_C Liverpool_D

win_C Liverpool_D league_C

Liverpool_D win_C

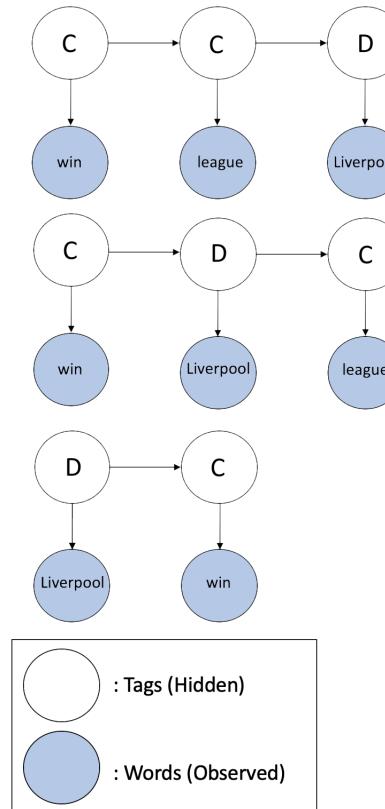


Figure 1: Visualization of Sequences

You are also given the following observed (validation) data:

`Liverpool` `win` `league`

In this question, let each observed state $x_t \in \{1, 2, 3\}$, where 1 corresponds to `win`, 2 corresponds to `league`, and 3 corresponds to `Liverpool`. Let each hidden state $Y_t \in \{C, D\}$, where $s_1 = C$ and $s_2 = D$.

1. First, we need to train our HMM by generating the initial probabilities: π , the transition probability matrix: \mathbf{A} , the emission probability matrix: \mathbf{B} .

- (a) Find π . Recall that $\pi_j = P(Y_1 = s_j)$.

(b) Find Transition Matrix: \mathbf{A} . Recall that $A_{jk} = P(Y_t = s_k \mid Y_{t-1} = s_j)$

(c) Find Emission Matrix: \mathbf{B} . Recall that $B_{jk} = P(X_t = k \mid Y_t = s_j)$.

2. What is the likelihood of observing this output?

Recall that:

$$\alpha_t(k) = P(x_{1:t}, Y_t = s_k)$$

$$\beta_t(k) = P(x_{t+1:T} | Y_T = s_k)$$

We also have the recursive procedure:

(a) $\alpha_1(j) = \pi_j B_{jx_1}$.

(b) For $t > 1$, $\alpha_t(j) = B_{jx_t} \sum_{k=1}^J \alpha_{t-1}(k) A_{kj}$

You are now told that the observed data has the following tags:

Liverpool_D win_C league_D

3. Given the observed sequence of words (denote $\vec{x} = [\text{Liverpool, win, league}]^T$), what is the probability of these assigned tags $P(Y_1 = D|\vec{x}), P(Y_2 = C|\vec{x}), P(Y_3 = D|\vec{x})$?

Recall that:

$$P(Y_t = s_k | \vec{x}) = \frac{\alpha_t(s_k) \beta_t(s_k)}{P(\vec{x})}$$

So, we need to find β_T

We also have a similar recursive procedure

- (a) $\beta_T(j) = 1$ (All states could be ending states)
- (b) For $1 \leq t \leq T-1$, $\beta_t(j) = \sum_{k=1}^J B_{kx_{t+1}} \beta_{t+1}(k) A_{jk}$ (Generate x_{t+1} from any state)

4. The sequence of words you observe is again the same:

Liverpool win league

However, you are only given the tag of the last word:

league_C

Using the Viterbi Algorithm, what is the most likely sequence of hidden states?

Recall that:

$$\omega_t(s_k) = \max_{y_{1:t-1}} P(x_{1:t}, y_{1:t-1}, y_t = s_k)$$

$$b_t(s_k) = \arg \max_{y_{1:t-1}} P(x_{1:t}, y_{1:t-1}, y_t = s_k)$$

(a) What is the most likely sequence of tags given the observed data? (Select C if there is a tie)