
Announcements
Assignments

▪ HW6

▪ Due Today, 11:59 pm

Midterm 2

▪ Mon, 11/9, during lecture

▪ See Piazza for details on practice exam tomorrow

Schedule change

▪ Lecture on Friday instead of recitation



Plan
Last Time

▪ M(C)LE argmax
𝜃

𝑝(𝑦 ∣ 𝒙, 𝜽)

▪ MAP argmax
𝜃

𝑝 𝑦 𝒙, 𝜽 𝑝 𝜽

Today

▪ Generative models

▪ Naïve Bayes

argmax
𝜃

𝑝 𝒙 𝑦, 𝜃 𝑝(𝑦 ∣ 𝜃)

argmax
𝜃

ς𝑚=1
𝑀 𝑝 𝑥𝑚 𝑦, 𝜃 𝑝(𝑦 ∣ 𝜃)



Introduction to 
Machine Learning

Generative Models & 
Naïve Bayes

Instructor: Pat Virtue



Recall: Fisher Iris Dataset
https://en.wikipedia.org/wiki/Iris_flower_data_set

https://en.wikipedia.org/wiki/Iris_flower_data_set


Recall: Fisher Iris Dataset
https://en.wikipedia.org/wiki/Iris_flower_data_set

Slides from Matt Gormley, CMU

https://en.wikipedia.org/wiki/Iris_flower_data_set


Modeling the Fisher Iris Dataset

Image: CMU MLD, William Cohen



Modeling the Fisher Iris Dataset
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Modeling the Fisher Iris Dataset

Image: CMU MLD, William Cohen



Generative vs Discriminative Modeling
Discriminative: modeling X → Y directly

Generative: Stronger modeling assumptions about where data came from



Generative vs Discriminative Modeling
Discriminative: model 𝑝(𝑦 ∣ 𝑥, 𝜃) directly

▪ Learn parameters 𝜃 from data

Generative: model 𝑝 𝑦 𝜃𝑐𝑙𝑎𝑠𝑠 and 𝑝 𝑥 𝑦, 𝜃𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
▪ Learn parameters 𝜃𝑐𝑙𝑎𝑠𝑠 and 𝜃𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 from data

▪ Use Bayes rule to compute 𝑝(𝑦 | 𝑥, 𝜃𝑐𝑙𝑎𝑠𝑠 , 𝜃𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)

𝑝(𝑦 | 𝑥, 𝜃𝑐𝑙𝑎𝑠𝑠, 𝜃𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙) ∝ 𝑝 𝑥 𝑦, 𝜃𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝 𝑦 𝜃𝑐𝑙𝑎𝑠𝑠



Generative Story
News article topic classification

▪ Document class: Business, Entertainment, Politics

▪ Words in the document

SPAM classification

▪ Document class: SPAM or not

▪ Words in the document



Generative Story
Hand-written digits

▪ Digit class: 0-9

▪ Pixels in images



Generative vs Discriminative Modeling
Discriminative: 𝑝(𝑦 ∣ 𝑥)

Generative: 𝑝(𝑦 | 𝑥) = 𝛼 𝑝(𝑥, 𝑦) = 𝛼 𝑝 𝑥 𝑦 𝑝 𝑦

Assumptions vs Data

▪ Discriminative:

▪ Generative:



Quick Check
How many parameters?

▪ 𝑃 𝑌 , 𝑌 represents outcome of a 6-sided die roll



Multivariate Generative Models
Hand-written digits: How many parameters?

▪ 𝑃 𝑌

▪ 𝑃 𝑿 𝑌 = 3

= 𝑝 𝑋1, 𝑋2, …𝑋64 𝑌 = 3

Naïve Bayes assumption (bag of pixels)

▪ 𝑃 𝑌

▪ 𝑃 𝑿 𝑌 = 3

= 𝑝 𝑋1 𝑌 = 3 𝑝 𝑋2 𝑌 = 3 …𝑝(𝑋64 ∣ 𝑌 = 3)



Conditional Independence and Naïve Bayes
Independence

Conditional independence



Conditional Independence
Example: Fire, Smoke, Alarm

Fire and Alarm are independent given Smoke

𝑃 𝐴 ∣ 𝑆, 𝐹 = 𝑃 𝐴 ∣ 𝑆

Image: http://ai.berkeley.edu/

http://ai.berkeley.edu/


Conditional Independence and Naïve Bayes
Independence

Conditional independence

Naïve Bayes assumption

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵)𝑃 𝐴 ∣ 𝐵 = 𝑃 𝐴
𝑃 𝐵 ∣ 𝐴 = 𝑃 𝐵

𝑃 𝐴 ∣ 𝐵, 𝐶 = 𝑃 𝐴 ∣ 𝐶
𝑃 𝐵 ∣ 𝐴, 𝐶 = 𝑃 𝐵 ∣ 𝐶

𝑃 𝐴, 𝐵 ∣ 𝐶 = 𝑃 𝐴 ∣ 𝐶 𝑃(𝐵 ∣ 𝐶)



Naïve Bayes for Digits

𝑦 𝑃(𝑌)

1 0.1

2 0.1

3 0.1

4 0.1

5 0.1

6 0.1

7 0.1

8 0.1

9 0.1

0 0.1

𝑦 𝑃(𝑋3,1 = 1 ∣ 𝑦)

1 0.01

2 0.05

3 0.05

4 0.30

5 0.80

6 0.90

7 0.05

8 0.60

9 0.50

0 0.80

𝑦 𝑃(𝑋5,5 = 1 ∣ 𝑦)

1 0.05

2 0.01

3 0.90

4 0.80

5 0.90

6 0.90

7 0.25

8 0.85

9 0.60

0 0.80



SPAM Classification
Breakout room exercise

https://tinyurl.com/301601spam

SPAM classification

▪ 𝑌: Binary random variable

Document is SPAM (𝑌 = 1) or not (𝑌 = 0)

▪ 𝑋𝑚: Binary random variable

Word 𝑚 appears in document (𝑋𝑚 = 1) or not (𝑋𝑚 = 0)

Page 1: Estimate parameters from data

Page 2: Calculate probabilities of new sentence given page 1 parameters

https://tinyurl.com/301601spam


SPAM Classification
Breakout room exercise

𝑃(𝑌 = 0, 𝑋1, … , 𝑋𝑀) 𝑃(𝑌 = 1, 𝑋1, … , 𝑋𝑀)

𝑃(𝑌 = 0 ∣ 𝑋1, … , 𝑋𝑀) 𝑃(𝑌 = 1 ∣ 𝑋1, … , 𝑋𝑀)



Reminder MLE for Bernoulli
Bernoulli distribution:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 = ቊ
𝜙, 𝑦 = 1
1 − 𝜙, 𝑦 = 0

What is the log likelihood for three i.i.d. samples, given parameter 𝜙?

𝒟 = {𝑦 1 = 1, 𝑦 2 = 1, 𝑦 3 = 0}

𝐿 𝜙 = 𝜙 ⋅ 𝜙 ⋅ (1 − 𝜙) = ς𝑛 𝜙𝑦 𝑛
1 − 𝜙 1−𝑦(𝑛)

𝐿 𝜙 = 𝜙2 ⋅ 1 − 𝜙 1 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0



Naïve Bayes MLE
𝐿 ϕ,𝚯 = 𝑝 𝒟 ϕ,𝚯)

= Π𝑛=1
𝑁 𝑝 𝒟 𝑛 ϕ,𝚯 i.i.d assumption

= Π𝑛=1
𝑁 𝑝 y 𝑛 , 𝒙 𝑛 ϕ,𝚯

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ 𝑝 𝒙 𝑛 y 𝑛 , 𝚯 Generative model

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ 𝑝 𝑥1

(𝑛)
, 𝑥2

(𝑛)
, … , 𝑥𝑀

(𝑛)
y 𝑛 , 𝚯

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ Π𝑚=1

𝑀 𝑝 𝑥𝑚
(𝑛)

y 𝑛 , 𝜃𝑚,𝑦 Naïve Bayes

𝒟 = 𝑦 𝑛 , 𝒙(𝑛)
𝑛=1

𝑁

𝑦(𝑛) ∈ {0,1}

𝒙(𝑛) ∈ 0,1 𝑀

𝜙 ∈ [0,1]
𝚯 ∈ 0,1 𝑀𝑥2



Naïve Bayes MLE
𝐿 ϕ,𝚯 = 𝑝 𝒟 ϕ,𝚯)

= Π𝑛=1
𝑁 𝑝 𝒟 𝑛 ϕ,𝚯 i.i.d assumption

= Π𝑛=1
𝑁 𝑝 y 𝑛 , 𝒙 𝑛 ϕ,𝚯

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ 𝑝 𝒙 𝑛 y 𝑛 , 𝚯 Generative model

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ 𝑝 𝑥1

(𝑛)
, 𝑥2

(𝑛)
, … , 𝑥𝑀

(𝑛)
y 𝑛 , 𝚯

= Π𝑛=1
𝑁 𝑝 y 𝑛 ϕ Π𝑚=1

𝑀 𝑝 𝑥𝑚
(𝑛)

y 𝑛 , 𝜃𝑚,𝑦 Naïve Bayes

= Π𝑛=1
𝑁 𝜙𝑦(𝑛) 1 − 𝜙 1−𝑦(𝑛) Π𝑚=1

𝑀 𝜃𝑚,1

𝕀 𝑦 𝑛 =1 ∧ 𝑥𝑚
𝑛
=1

1 − 𝜃𝑚,1
𝕀 𝑦(𝑛)=1 ∧ 𝑥𝑚

(𝑛)
=0

𝜃𝑚,0

𝕀 𝑦 𝑛 =0 ∧ 𝑥𝑚
𝑛
=1

1 − 𝜃𝑚,0
𝕀 𝑦(𝑛)=0 ∧ 𝑥𝑚

(𝑛)
=0

= 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0 Π𝑚=1
𝑀 𝜃𝑚,1

𝑁𝑦=1,𝑥𝑚=1
1 − 𝜃𝑚,1

𝑁𝑦=1,𝑥𝑚=0
𝜃𝑚,0

𝑁𝑦=0,𝑥𝑚=1
1 − 𝜃𝑚,0

𝑁𝑦=0,𝑥𝑚=0

𝒟 = 𝑦 𝑛 , 𝒙(𝑛)
𝑛=1

𝑁

𝑦(𝑛) ∈ {0,1}

𝒙(𝑛) ∈ 0,1 𝑀

𝜙 ∈ [0,1]
𝚯 ∈ 0,1 𝑀𝑥2



Generative Models
SPAM:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

▪ Class conditional distribution: 𝑋𝑚 ∼ 𝐵𝑒𝑟𝑛(𝜃𝑚,𝑦)

▪Naïve Bayes 𝑋𝑖 conditionally independent 𝑋𝑗 given 𝑌 for all 𝑖 ≠ 𝑗
𝑝(𝑋𝑖 , 𝑋𝑗 | 𝑌) = 𝑝(𝑋𝑖 | 𝑌) 𝑝(𝑋𝑗 | 𝑌)

Digits:

▪ Class distribution: 𝑌 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝝓)

▪ Class conditional distribution: 𝑋𝑚 ∼ 𝐵𝑒𝑟𝑛(𝜃𝑚,𝑦)

▪Naïve Bayes 𝑋𝑖 conditionally independent 𝑋𝑗 given 𝑌 for all 𝑖 ≠ 𝑗
𝑝(𝑋𝑖 , 𝑋𝑗 | 𝑌) = 𝑝(𝑋𝑖 | 𝑌) 𝑝(𝑋𝑗 | 𝑌)



Generative Models with Continuous Features
Iris dataset:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

▪ Class conditional distribution: Multivariate Gaussian 𝑿 ∼ 𝒩(𝝁𝑦 , 𝚺𝑦)

▪Naïve Bayes assumption?



Piazza Poll 1

Which of the following pairs of Gaussian class conditional distributions 
satisfy the Naïve Bayes assumptions? Select ALL that apply.

A. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 0
0 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 0
0 1

B. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 0
0 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

3 0
0 3

C. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 1
1 2

,    𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 1
1 2

D. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 1
1 2

,    𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 0
0 1

Iris dataset:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

▪ Class conditional distribution: 𝑿 ∼ 𝒩(𝝁𝑦 , 𝚺𝑦)

▪Naïve Bayes assumption?



Piazza Poll 1

A. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 0
0 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 0
0 1

B. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 0
0 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

3 0
0 3

C. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 1
1 2

,     𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 1
1 2

D. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 1
1 2

,   𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 0
0 1



Class-conditional Gaussian Distributions
Iris dataset:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙) (or Categorical)

▪ Class conditional distribution: 𝑿 ∼ 𝒩(𝝁𝑦 , 𝚺𝑦)

▪Naïve Bayes assumption:

▪ Linear Decision Boundary:

▪Quadradic Decision Boundary:



MLE vs MAP vs Generative vs Discriminative


